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Abstract. Over the past decade, soft solids containing electro-
and magneto-active liquid — as opposed to solid — inclusions have
emerged as a new class of smart materials with promising novel elec-
tromechanical properties. In this context, a recent contribution has
put forth a continuum theory that describes the macroscopic elastic
behavior of elastomers filled with liquid inclusions under quasistatic
finite deformations from the bottom up, directly in terms of their
microscopic behavior at the length scale of the inclusions. This
chapter presents the generalization of that theory to the coupled
realm of the elastic dielectric behavior of such an emerging class of
filled elastomers when in addition to undergoing quasistatic finite
deformations they are subjected to quasistatic electric fields. The
chapter starts with the description of the underlying fundamen-
tals in the continuum — id est, kinematics, conservation of mass,
Maxwell’s equations, balance of momenta, and constitutive behav-
ior of both the bulk (the solid elastomer and the liquid inclusions)
and the solid/liquid interfaces — and ends with their combination
to formulate the resulting governing equations.
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1 Introduction

The study of the mechanics of interfaces in the continuum has a long and
rich history with origins dating back to the classical works of Young (1805)
and Laplace (1806) in the early 1800s on interfaces between fluids and of
Gibbs (1878) in the 1870s on the more general case of interfaces between
solids and fluids. Despite this early origins, it was only in 1975 that com-
plete descriptions of the kinematics, the concept of interface stress, and
the balance of linear and angular momenta of bodies containing material
interfaces were properly formulated, alongside their specialization to the ba-
sic constitutive case of elastic interfaces (Gurtin and Murdoch (1975a,b)).
This advancement in theory, however, was not followed by its exploitation
in practice, surely because of the technical difficulties of measuring and tai-
loring the mechanical properties of interfaces at the time. This changed in
the early 2000s, when the appearance of new synthesis and characterization
tools reinvigorated the study of interfaces in soft matter.

In this context, elastomers filled with liquid — as opposed to solid — in-
clusions are a recent trend in the soft matter community because — thanks
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to the behavior of the solid/liquid interfaces — they are capable of exhibit-
ing remarkable mechanical and physical properties; see, e.g., Lopez-Pamies
(2014); Style et al. (2015a); Bartlett et al. (2017); Lefèvre and Lopez-Pamies
(2017a,b); Lefèvre et al. (2017); Yun et al. (2019). Indeed, the interfacial
mechanics in these soft material systems can be actively tailored to enhance
or impede deformability. In particular, while the addition of liquid inclu-
sions should increase the macroscopic deformability of the material, the
behavior of the solid/liquid interfaces, if negligible when the inclusions are
“large”, may counteract the macroscopic properties of the material when
the inclusions become sufficiently “small”.

As a first step to understand in a precise and quantitative manner this
new paradigm, Ghosh and Lopez-Pamies (2022) have recently worked out
the governing equations that describe from the bottom up the mechanical
response of an elastic solid filled with initially spherical inclusions made
of a pressurized elastic fluid when the solid/fluid interfaces are elastic and
possess an initial surface tension; see also Ghosh et al. (2023a,b) for appli-
cations, Casado Dı́az et al. (2023) for the associated mathematical analysis,
as well as Style et al. (2015b), Wang and Henann (2016), and Krichen et al.
(2019) for earlier preliminary studies.

In this chapter, we generalize the formulation of Ghosh and Lopez-
Pamies (2022) to the coupled realm of elastic dielectric behavior. In particu-
lar, we work out the governing equations that describe the electromechanical
response of an elastic dielectric solid filled with initially spherical inclusions
made of a pressurized elastic dielectric fluid when the solid/fluid interfaces
feature their own elastic dielectric behavior and possess an initial surface
tension.

The organization of the chapter is as follows. In Sections 2 through 6,
we present separately the relevant basic ingredients of:

� initial configuration and kinematics of the bulk and interfaces,

� conservation of mass,

� Maxwell’s equations in the presence of material interfaces,

� balance of linear and angular momenta in the presence of material
interfaces, and

� elastic dielectric constitutive behavior of the bulk and interfaces.

The combination of these ingredients leads to the governing equations that
describe the elastic dielectric response of elastomers filled with liquid in-
clusions under finite quasistatic deformations and quasistatic electric fields.
We present these in Section 7.
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2 Initial configuration and kinematics

Initial configuration Consider a body made of M liquid inclusions fully
embedded in a solid matrix that in its initial configuration occupies the open
domain Ω0 ⊂ R3, with boundary ∂Ω0 and outward unit normal N. Denote
by Ωm

0 the subdomain occupied by the matrix and by Ωi,j
0 j = 1, 2, ...,M

that occupied by the jth inclusion. The inclusions are separated from the
matrix by smooth interfaces, denoted by Γj

0 for the jth inclusion, with unit

normal “N pointing outwards from the inclusions towards the matrix, so that
Ω0 = Ωm

0

⋃
Γ0

⋃
Ωi

0, where Γ0 =
⋃M

j=1 Γ
j
0 and Ωi

0 =
⋃M

j=1 Ω
i,j
0 . We identify

material points in the body by their initial position vector

X ∈ Ω0

and denote by θi,j0 (X) and θi0(X) the characteristic or indicator functions
describing the individual and collective spatial locations occupied by the
inclusions in Ω0, that is,

θi,j0 (X) =

ß
1 if X ∈ Ωi,j

0

0 otherwise
j = 1, 2, ...,M and θi0(X) =

M∑
j=1

θi,j0 (X).

(1)
As will become apparent below, it is convenient to single out the material
points on the interfaces with their own labeling. We write“X = X when X ∈ Γ0.

Figure 1(a) shows a schematic of the body in its initial configuration with
all the pertinent geometric quantities depicted.

Kinematics In response to the externally applied mechanical forces and
electric fields described further below, the position vector X of a material
point may occupy a new position x specified by a continuous1, invertible,
orientation-preserving mapping y from Ω0 to the current configuration Ω =
Ωm

⋃
Γ
⋃
Ωi ⊂ R3, termed the deformation field. Here, in direct analogy to

their initial counterparts, Ωm, Ωi, and Γ denote the subdomains occupied
by the matrix and the inclusions and the interfaces separating them; by the
same token, the notation n̂, θi,j , and θi is used to denote the counterparts

of “N, θi,j0 , and θi0 in the current configuration. We write

x = y(X).

1The focus here is on liquid inclusions, which naturally exhibit coherent interfaces with

the surrounding solid matrix, thus our restriction to continuous deformation fields.
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(a) (b)

Figure 1. Schematics of (a) the initial and (b) the current configurations of a
body made of a solid matrix filled with liquid inclusions.

Singling out again the material points on the interfaces with their own
labeling, we also write

x̂ = y(“X).

We denote the deformation gradient at X ∈ Ω0 by

F(X) = ∇y(X) =
∂y

∂X
(X)

and the interface deformation gradient at “X ∈ Γ0 by

F̂(“X) = “∇y(“X) = F(“X)̂I, (2)

where Î stands for the projection tensor

Î = I− “N⊗ “N.

The notation (2) merits some clarification. Assuming sufficient regularity
away from the interfaces, the requirement that the deformation field y(X)
be continuous implies the Hadamard jump condition

JF(“X)KÎ = 0 with JF(“X)K := Fi(“X)− Fm(“X), (3)

where Fi (Fm) denotes the limit of F when approaching Γ0 from Ωi
0 (Ωm

0).

Although Fi ̸= Fm at Γ0, F
iÎ = FmÎ, and it is for this reason that, with
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some abuse of notation, we do not include the label ‘i’ or ‘m’ in the right-
hand side of (2). In the sequel, at solid/liquid interfaces, we always make
use of the convention J·K := (·)i − (·)m for the jump operator acting on any
field.

The interested reader is referred to, for instance, do Carmo (2016);
Weatherburn (2016); Gurtin et al. (1998); Javili et al. (2013) for a thor-
ough description of differential operators defined on surfaces embedded in
R3 and of the kinematics of interfaces. For our purposes here, it suffices to
make explicit mention of some of the properties of the interface deformation
gradient (2).

In direct analogy to the transformation rules for material line elements

dX in the bulk, material line elements d“X on the interfaces transform ac-
cording to the rules

dx̂ = F̂d“X and d“X = F̂
−1

dx̂.

Owing to its rank deficiency, the inverse F̂
−1

of the interface gradient de-
formation F̂ is defined implicitly by the relations

F̂
−1

F̂ = Î and F̂F̂
−1

= î.

where

î = I− n̂⊗ n̂ with n̂ =
1

|JF−T“N|
JF−T“N.

That is

F̂
−1

= F−1 î.

In these last expressions, we have made use of the standard notation J =
detF for the determinant of the deformation gradient F and exploited the

facts that JiFi−T“N = JmFm−T“N and Fi−1
î = Fm−1 î, thanks to (3), to

simply write, with the same abuse of notation as in (2), JF−T“N and F−1 î
without the label ‘i’ or ‘m’.

Furthermore, the area dA of material surface elements “NdA on the in-
terfaces transforms according to the rule

da = ĴdA with Ĵ = |JF−T“N|.

This transformation rule also serves to define the interface determinant op-

erator ”det F̂ = Ĵ .
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Finally, we note that material curve elements M̂dL on the interfaces
transform according to the rule“m dl = ĴF̂

−T
M̂ dL,

where M̂ is a unit vector that is tangential to Γ0 and normal to the curve dL.
Figure 1(b) provides a schematic of the body in its current configuration
with all the above geometric quantities depicted.

3 Conservation of mass

In any given subdomain of the current configuration D ⊂ Ω we consider the
existence of a mass density

ρ(x) ≥ 0, x ∈ D.

Integral form Conservation of mass then reads
�
D
ρdx =

�
D0

ρ0 dX, (4)

where ρ0(X) is the mass density in the initial configuration.

Localized form It follows from the integral form (4) that
�
D0

Jρ dX =

�
D0

ρ0 dX

and hence that conservation of mass can be rewritten in the localized form

ρ = J−1ρ0, x ∈ Ω \ Γ. (5)

4 Maxwell’s equations in the presence of material
interfaces

4.1 Bulk and interface charges, electric fields, and electric dis-
placements

In any given subdomain of the current configuration D ⊂ Ω, with bound-
ary ∂D and outward unit normal ñ, we consider the presence of a space
charge density per unit current volume

q(x), x ∈ D,
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an electric displacement

d(x), x ∈ D,

an electric field

e(x), x ∈ D,

an interface charge density per unit current area

q̂(x̂), x̂ ∈ S,

and an interface electric displacement

d̂(x̂), x̂ ∈ S,

where S ⊂ Γ, with boundary ∂S, stands for any subsurfaces of the interfaces
that the subdomain D may contain. The first four of these quantities are
standard. The fifth one accounts for the possibility of an additional polar-
ization mechanism at the matrix/inclusions interfaces. Within such a class
of interface electric displacements, we shall restrict attention to tangential
electric displacements in the sense that

î d̂ = d̂. (6)

Figure 2 shows a schematic of a generic subdomain D with all five types of
bulk and interface quantities depicted.

+ +

� �

+

�

Figure 2. Schematic of a subdomain of the current configuration D ⊂ Ω, with
boundary ∂D and outward unit normal ñ, indicating the space charge q(x), the
electric displacement d(x), the electric field e(x), the interface charge q̂(x̂), and

the interface electric displacement d̂(x̂).

8



4.2 Gauss’s law

Integral form In view of the presence of bulk and interface charges and
the interface electric displacement, the integral form of Gauss’s law reads

�
∂D

d · ñ dx+

�
∂S

d̂ · “m dx̂ =

�
D
q dx+

�
S
q̂ dx̂. (7)

Localized form Making use of the bulk divergence theorem (written here,
for clarity, in indicial notation with respect to a Cartesian frame of reference)

�
D

∂(·)
∂xk

dx =

�
∂D

(·)ñk dx+

�
S
J·Kn̂k dx̂ (8)

and the interface divergence theorem

�
S

∂(·)
∂xl

îkl dx̂ =

�
∂S

(·)“mk dx̂+

�
S

∂n̂p

∂xq
îpq(·)n̂k dx̂, (9)

together with the fact that the interface electric displacement d̂ is a tan-
gential vector — so that d̂ · n̂ = 0 as a consequence of (6) — Gauss’s law
(7) can be rewritten in the localized or differential form

divd = q, x ∈ Ω \ Γ”div d̂− JdK · n̂ = q̂, x ∈ Γ

divd = 0, x ∈ R3 \ Ω

JdK · n = 0, x ∈ ∂Ω

. (10)

In these expressions, div is the standard divergence operator in the bulk and”div stands for the interface divergence operator, that is, in indicial notation

divd =
∂dk
∂xk

and ”div d̂ =
∂dk
∂xl

îkl.

Remark 4.1. Note that equations (10) make it explicit that Gauss’s law
applies in the entirety of space, and hence also outside the body.

Lagrangian localized form Much like its integral counterpart (7), Gauss’s
law (10) is in Eulerian (spatial) form. For computational purposes, we shall
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find it more convenient to deal with it in its Lagrangian (material) form

DivD = Q, X ∈ Ω0 \ Γ0

D̂iv“D− JDK · “N = “Q, X ∈ Γ0

DivD = 0, X ∈ R3 \ Ω

JDK ·N = 0, X ∈ ∂Ω0

, (11)

where Q = Jq is the space charge density per unit initial volume, D =
JF−1d is the Lagrangian electric displacement, while “Q = Ĵ q̂ stands for the

interface charge density per unit initial area, and “D = ĴF̂
−1

d̂ stands for
the Lagrangian interface electric displacement.

The notation utilized in equations (11) for the bulk and interface di-
vergence operators in the initial configuration is entirely analogous to that
employed in (10) in the current configuration: DivD = tr∇D = ∇D · I
and D̂iv“D = tr“∇“D = ∇“D · Î. A derivation of (11) starting from (10) is
provided in Appendix A.

4.3 Faraday’s law

Integral form In the absence of magnetic fields, electric currents, and
time dependence, when Ampère’s law and Gauss’s law for magnetism are
trivially satisfied, the integral form of Faraday’s law reads

�
∂Σ

e · dx = 0, (12)

Figure 3. Schematic of an open surface Σ, cutting through a liquid inclusion,
in the current configuration Ω indicating its unit normal ñ and boundary ∂Σ.
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where Σ is any given open surface, with unit normal ñ, in the current
configuration Ω and ∂Σ denotes its boundary, a closed curve oriented in the
usual sense with respect to ñ; see Fig. 3.

Localized form Making use of Stokes’s theorem

�
Σ

(curl e) · ñdx =

�
∂Σ

e · dx+

�
∂S

JeK · dx,

Faraday’s law (12) can be rewritten in the localized form



curl e = 0, x ∈ Ω \ Γ

î JeK = 0, x ∈ Γ

curl e = 0, x ∈ R3 \ Ω

(I− n⊗ n) JeK = 0, x ∈ ∂Ω

. (13)

In these expressions, curl is the standard curl operator in the bulk, that is,
in indicial notation

(curl e)i = εijk
∂ek
∂xj

.

Remark 4.2. Analogous to (10), equations (13) make it explicit that Fara-
day’s law applies in the entirety of space, and hence also outside the body.

Remark 4.3. Equations (13) imply that the electric field e is the gradient of
an electric potential, say ϕ(x), that is a continuous function of x. Precisely,

e = ∇xϕ =
∂ϕ

∂x
, x ∈ Ω \ Γ

JϕK = 0, x ∈ Γ

e = ∇xϕ =
∂ϕ

∂x
, x ∈ R3 \ Ω

JϕK = 0, x ∈ ∂Ω

.

Lagrangian localized form For computational purposes, as already noted
for Gauss’s law above, we shall find it more convenient not to deal with the
Eulerian form (13) of Faraday’s law, but to do so with its Lagrangian form.
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This reads 

CurlE = 0, X ∈ Ω0 \ Γ0

Î JEK = 0, X ∈ Γ0

CurlE = 0, X ∈ R3 \ Ω0

(I−N⊗N) JEK = 0, X ∈ ∂Ω0

, (14)

where E = FTe is the Lagrangian electric field and the curl operator is
entirely analogous to that employed in (13) in the current configuration:
CurlE = ∇ ∧ E. A derivation of (14) starting from (12) is provided in
Appendix B.

Remark 4.4. Of course, exactly like equations (13), equations (14) imply
that the Lagrangian electric field E is the gradient of an electric potential,
say Φ(X), that is a continuous function of X. Precisely,

E = ∇Φ, X ∈ Ω0 \ Γ0

JΦK = 0, X ∈ Γ0

E = ∇Φ, X ∈ R3 \ Ω0

JΦK = 0, X ∈ ∂Ω0

.

Clearly, Φ(X) = ϕ(y(X)).

5 Balance of momenta in the presence of material
interfaces

5.1 Bulk and interface electric and mechanical forces

In any given subdomain of the current configuration D ⊂ Ω, with bound-
ary ∂D and outward unit normal ñ, the presence of the space charge density
q, electric field e, and electric displacement d described in the preceding
section generates an electric surface force per unit current area, or electric
surface traction, given by

te(x) =

ï
e⊗ d− 1

2
ε0(e · e)I

ò
︸ ︷︷ ︸

Te

ñ, x ∈ ∂D, (15)

where ε0 is the permittivity of vacuum and Te is the so-called Maxwell
stress.
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Remark 5.1. Making use of the bulk divergence theorem (8), the electric
surface traction (15) implies the presence of an electric body force per unit
current volume, which reads

be(x) = divTe = qe+ (∇xe) (d− ε0e) , x ∈ D;

see, e.g., Eq. (7.38) in the review by Pao (1978).

Remark 5.2. In direct analogy to (15), the interface charge density q̂ and

interface electric displacement d̂ described in the preceding section gener-
ate an electric interface force per unit current length, or electric interface
traction, say t̂e(x̂), x̂ ∈ ∂S. In this work, we take such an electric interface
force to be negligible compared to the rest of forces.

In addition to the electric surface force (15), we consider that there may
be three different types of mechanical forces present in any given subdomain
D ⊂ Ω, to wit, a mechanical body force per unit current volume

bm(x), x ∈ D,

a mechanical surface force per unit current area, or mechanical surface trac-
tion,

tm(x, ñ), x ∈ ∂D,

and a mechanical interface force per unit current length, or mechanical
interface traction,

t̂m(x̂, “m), x̂ ∈ ∂S.

Recall that ∂S stands for the boundary of any subsurfaces of the interfaces
S ⊂ Γ that the subdomain D may contain. The first two of these three
mechanical forces are standard. The third one accounts for the possibility
of additional forces at the matrix/inclusions interfaces, such as, for instance,
surface tension and Marangoni forces; see, e.g., Popinet (2018) and refer-
ences therein. Within such a class of interface forces, in analogy to (6), we
shall restrict attention to tangential forces in the sense that

î t̂m = t̂m. (16)

Note that Cauchy’s fundamental postulate has been tacitly assumed to ap-
ply, thus the dependencies of the surface traction tm on n̂ and of the inter-
facial traction t̂m on “m, which, again, stands for the outward unit normal
to ∂S. Figure 4 shows a schematic of a generic subdomain D with all four
types of forces depicted.
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Figure 4. Schematic of a subdomain of the current configuration D ⊂ Ω, with
boundary ∂D and outward unit normal ñ, indicating the electric surface force
te(x), mechanical body force bm(x), mechanical surface force tm(x, ñ), and me-
chanical interface force t̂m(x̂, “m) that is subjected to.

5.2 Balance of linear momentum

Integral form Absent inertia, granted the above-described types of elec-
tric and mechanical forces, balance of linear momentum reads

�
∂D

te (x) dx+

�
D
bm(x) dx+

�
∂D

tm (x, ñ) dx+

�
∂S

t̂m (x̂, “m) dx̂ = 0.

(17)

Assuming that tm and t̂m are continuous in ∂D \ ∂S and ∂S, respectively,
if follows from (17) that

tm(x, ñ) = Tm(x)ñ, x ∈ D \ S, t̂m(x̂, “m) = “Tm(x̂)“m, x̂ ∈ S, (18)

where Tm is the standard Cauchy stress tensor in the bulk (resulting from

mechanical forces) while “Tm is the interface Cauchy stress tensor. The
former is continuous in D \S but may have a jump at S, while the latter is
continuous on S and, by virtue of (16), is a tangential tensor in the sense

that î“Tm î = “Tm.

Localized form Making use of relations (18), the bulk divergence the-

orem (8), the interface divergence theorem (9), and the fact that “T is a

superficial tensor in the sense that “Tm î = “Tm, the integral form (17) of the
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balance of linear momentum can be rewritten as�
D
divTe dx−

�
S
JTeKn̂dx̂+

�
D
bm(x) dx+

�
D
divTm dx−

�
S
JTmKn̂dx̂+

�
S
”div“Tm dx̂ = 0,

from which one can readily determine the localized form{
divT+ b = 0, x ∈ Ω \ Γ”div“T− JTKn̂ = 0, x ∈ Γ

(19)

in terms of the total Cauchy stress tensor

T = Tm +Te (20)

in the bulk.
In these last expressions, for notational simplicity, we have dropped the

subscript “m” in

bm 7→ b and “Tm 7→ “T
since there is no longer risk of confusion. We also recall that div is the

standard divergence operator in the bulk, while ”div stands for the interface
divergence operator, namely, in indicial notation

(divT)i =
∂Tij

∂xj
and

Ä”div“Tä
i
=

∂T̂ij

∂xk
îjk.

Lagrangian localized form For computational purposes, once more, as
already noted for the Maxwell’s equations above, we favor dealing with the
Lagrangian form of the equations of balance of linear momentum. Those
read {

DivS+B = 0, X ∈ Ω0 \ Γ0

D̂iv Ŝ− JSK“N = 0, X ∈ Γ0

, (21)

where S = JTF−T is the total first Piola-Kirchhoff stress tensor in the
bulk, B = Jb is the mechanical body force per unit initial volume, and

Ŝ = Ĵ“TF̂
−T

stands for the interface first Piola-Kirchhoff stress tensor.
The notation utilized in (21) for the bulk divergence and interface diver-

gence operators in the initial configuration is entirely analogous to that em-
ployed in (19) in the current configuration: DivS = ∇S·I and D̂iv Ŝ = ∇Ŝ·̂I.
A derivation of (21) starting from (19) follows mutatis mutandis from the
derivation given in Appendix A of (Ghosh and Lopez-Pamies (2022)) for
the case when only mechanical forces are present.
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Remark 5.3. It follows from the connection F̂
−T

= îF̂
−T

Î that the inter-
face first Piola-Kirchhoff stress Ŝ is a superficial tensor in the sense that

ŜÎ = Ŝ. Contrary to “T, however, Ŝ is not a tangential tensor since, in
general, ÎŜÎ ̸= Ŝ.

5.3 Balance of angular momentum

Integral form In turn, absent inertia and granted the above-described
types of electric and mechanical forces, balance of angular momentum reads

�
∂D

x ∧ te (x) dx+

�
D
x ∧ bm(x) dx+

�
∂D

x ∧ tm (x, ñ) dx+

�
∂S

x ∧ t̂m (x̂, “m) dx̂ = 0. (22)

Localized form A standard calculation (see, e.g., Section 3.3.2 in the
monograph by Ogden (1997)) shows that the integral form (22) of the bal-
ance of angular momentum can be written in the simple localized form TT = T, x ∈ Ω \ Γ“TT

= “T, x ∈ Γ
(23)

in terms of the total Cauchy stress tensor (20) in the bulk and the interface

Cauchy stress tensor “T, where, for notational simplicity, we have again

dropped the subscript “m”: “Tm 7→ “T.

Lagrangian localized form Given the definitions S = JTF−T and Ŝ =

Ĵ“TF̂
−T

of the total bulk and interface first Piola-Kirchhoff stress tensors, it
is a simple matter to deduce from the balance of angular momentum (23) in
Eulerian form that the balance of angular momentum in Lagrangian form
is given by  SFT = FST , X ∈ Ω0 \ Γ0

ŜF̂
T
= F̂Ŝ

T
, X ∈ Γ0

. (24)

6 Constitutive behavior

For a given initial configuration Ω0 of the body, given initial mass density ρ0,
given bulk and interface charges Q and “Q, and given mechanical body force
B, mass conservation (5), the Maxwell’s equations (11) and (14), and the
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balance of linear and angular momenta (21) and (24) are coupled equations
for the deformation field y, the mass density ρ, the Lagrangian electric
displacement D, the Lagrangian electric field E, the Lagrangian interface

electric displacement “D, the total first Piola-Kirchhoff stress tensor S, and
the interface first Piola-Kirchhoff stress tensor Ŝ that apply generally.

The next step in the formulation of a mathematically closed system of
governing equations is to describe the intrinsic electromechanical properties
of the materials that the body is made of, precisely, the constitutive behavior
of: the solid that the matrix occupying the subdomain Ωm

0 is made of, the
liquid that the inclusions occupying the subdomain Ωi

0 are made of, and the
solid/liquid interfaces Γ0.

6.1 Constitutive behavior of the bulk: The solid matrix and the
liquid inclusions

Constitutive behavior of the solid matrix The focus of this work is
on material systems wherein the underlying solid matrix is an elastomer.
Accordingly, neglecting dissipative phenomena, we model the matrix as an
elastic dielectric solid. Precisely, making use of the formulation introduced
by Dorfmann and Ogden (2005), we find it convenient to characterize the
electromechanical behavior of the solid matrix in a Lagrangian formulation
by a total free energy (per unit initial volume)

Wm = Wm(F,E),

that is an objective function of the deformation gradient tensor F and an
objective and even function of the Lagrangian electric field E, so that

Wm(QF,E) = Wm(F,E) and Wm(F,−E) = Wm(F,E) ∀Q ∈ SO(3)

and arbitrary F and E.
In the sequel, for clarity of presentation, we will restrict attention to the

basic case of an ideal elastic dielectric for which the free energy reads

Wm(F,E) =
µm

2
[F · F− 3]−µm ln J+

Λm

2
(J−1)2− εm

2
JF−TE ·F−TE. (25)

In this constitutive prescription, the material constants µm > 0, Λm > 0,
εm ≥ ε0 stand for the initial Lamé constants and the initial permittivity of
the elastomer under consideration.

Remark 6.1. Here, it is important to emphasize that the use of a free en-
ergy of the form (25) implies that, in its initial configuration, the elastomeric
matrix is stress and polarization free. In other words, we are assuming that
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there are no residual stress and no residual polarization in the elastomeric
matrix. Depending on the fabrication process of the filled elastomer of inter-
est, however, this assumption may not be appropriate. As elaborated below
in Section 7, this assumption is indeed appropriate for the prototypical case
when the liquid inclusions are initially spherical in shape.

Constitutive behavior of the liquid inclusions Granted the absence
of inertia, the liquid making up the inclusions is presumed to behave as an
elastic dielectric fluid. For clarity of presentation, we consider in particular
that the electromechanical behavior of the liquid inclusions is characterized
by the free energy

W j
i (X,F,E) = rji(X)J +

Λi

2
(J − 1)2 − εi

2
JF−TE · F−TE j = 1, 2, ...,M,

(26)
where, as will become apparent below in Section 7, rji(X) shall stand for
the pressure — which is not necessarily zero due to the possible presence
of initial interfacial forces — that the liquid within the jth inclusion is
subjected to in the initial configuration, when F = I and E = 0, while
Λi ≥ 0 and εi ≥ ε0 denote the initial first Lamé constant (or bulk modulus
since µi = 0) and the initial permittivity of the liquid, respectively.

Remark 6.2. Given the constitutive prescription (26), the case of an in-
compressible liquid corresponds to setting Λi = +∞, while the case of a
conducting liquid corresponds to setting εi = +∞.

Remark 6.3. All M inclusions are assumed to be made of the same liquid,
thus the unique values of Λi and εi in (26). However, because each inclusion
is allowed to have its own initial geometry, and thus its own initial size, the
term rji(X) in (26) describing the residual stress within the inclusions may
be different for each inclusion.

Pointwise constitutive behavior of the bulk Given the indicator
functions (1) for the inclusions and the free energies (25) and (26) for the
matrix and the inclusions, the pointwise free energy for the bulk of the body
can be compactly written as

W (X,F,E) =ri(X)J+

µ(X)

2
[F · F− 3]− µ(X) lnJ +

Λ(X)

2
(J − 1)

2 −

ε(X)

2
JF−TE · F−TE, (27)
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where 

ri(X) =

M∑
j=1

θi,j0 (X)rji(X)

µ(X) = (1− θi0(X))µm

Λ(X) = (1− θi0(X)) Λm + θi0(X)Λi

ε(X) = (1− θi0(X)) εm + θi0(X)εi

.

It then follows that the total first Piola-Kirchhoff stress tensor S and the
Lagrangian electric displacement D at any material point in the bulk are
given by the relations

S(X) =
∂W

∂F
(X,F,E) =ri(X)JF−T+

µ(X)
Ä
F− F−T

ä
+ Λ(X)(J − 1)JF−T+

ε(X)JF−TE⊗ F−1F−TE−
ε(X)

2
(F−TE · F−TE)JF−T , X ∈ Ω0 \ Γ0 (28)

and

D(X) = −∂W

∂E
(X,F,E) = ε(X)JF−1F−TE, X ∈ Ω0 \ Γ0. (29)

Remark 6.4. In the limit of small deformations and moderate electric
fields2 — when H = F − I is of O(ζ), E is of O(ζ1/2), and ζ ↘ 0 — the
coupled constitutive response (28)-(29) reduces asymptotically to

S(X) =ri(X)I− ri(X)HT + ri(X)(trH)I+

µ(X)
Ä
H+HT

ä
+ Λ(X)(trH)I+

ε(X)E⊗E− ε(X)

2
(E ·E) I+O(ζ2) (30)

and

D(X) = ε(X)E+O(ζ3/2). (31)

2For studies of this fundamental limit, see, e.g., Stratton (1941); Tian et al. (2012);

Lefèvre and Lopez-Pamies (2014); Spinelli et al. (2015).
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The corresponding total Cauchy stress tensor T = J−1SFT and Eulerian
electric displacement d = J−1FD are given by

T(x) =ri(x)I+

µ(x)
Ä
H+HT

ä
+ Λ(x)(trH)I+

ε(x)E⊗E− ε(x)

2
(E ·E) I+O(ζ2) (32)

and

d(x) = ε(x)E+O(ζ3/2). (33)

Three key features are now immediate. First, in the initial configuration,
when x = X, F = I, and E = 0, the Lagrangian relations (30)-(31) and the
Eulerian relations (32)-(33) reduce to®

S(X) = ri(X)I

D(X) = 0
and

®
T(x) = ri(x)I

d(x) = 0
,

which indicate that the inclusions (but not the matrix) have a hydrostatic
residual stress. They also indicate that there is no residual polarization.
Second, the stress (30) is not symmetric as it does not depend only on the
symmetric part of H, but also on H itself. Third, the total first Piola-
Kirchhoff stress (30) does not coincide with the total Cauchy stress (32)
to O(||H||). As discussed at length by Ghosh and Lopez-Pamies (2022)
and also as elaborated below, these three non-standard features are direct
consequences of the presence of a residual stress, which in turn is a direct
consequence of the presence of interfacial forces.

Remark 6.5. Thanks to the objectivity of the free energies (25) and (26),
the constitutive relation (28) satisfies automatically the balance of angular
momentum (24)1 in the bulk.

6.2 Constitutive behavior of the solid/liquid interfaces

Next, we turn to the constitutive description of the interfaces. Similar
to the elastomeric matrix and liquid inclusions, we also consider that under
the quasistatic deformations and quasistatic electric fields of interest here
any (electric or mechanical) interfacial dissipative phenomena is negligible
and hence presume the interfaces to exhibit an elastic dielectric behavior.
Specifically, we consider that the interface first Piola-Kirchhoff stress ten-

sor Ŝ and the Lagrangian interface electric displacement “D are given by

20



relations of the form

Ŝ(X) =
∂Ŵ

∂F̂
(F̂, Ê), X ∈ Γ0 (34)

and “D(X) = −∂Ŵ

∂Ê
(F̂, Ê), X ∈ Γ0 (35)

in terms of a suitably well-behaved interface free energy (per unit initial

area) Ŵ (F̂, Ê), where we recall that F̂ stands for the interface deformation
gradient (2) and

Ê(X) = ÎE(X)

is the Lagrangian interface electric field.
In the sequel, for clarity of presentation, we will restrict attention to the

ideal-elastic-dielectric-type interface free energy

Ŵ (F̂, Ê) = γ̂ Ĵ +
µ̂

2

î
F̂ · F̂− 2

ó
− µ̂ ln Ĵ +

Λ̂

2
(Ĵ − 1)2 − ε̂

2
ĴF̂

−T
Ê · F̂

−T
Ê.

(36)

In this constitutive prescription, the material constant γ̂ ≥ 0 describes the
initial surface tension on the solid/liquid interfaces under consideration.

On the other hand, µ̂ ≥ 0, Λ̂ ≥ 0, and ε̂ ≥ 0 can be viewed as the initial
interface Lamé constants and the initial interface permittivity. All three
material constants γ̂, µ̂, Λ̂ have units of force/length. On the other hand,
the material constant ε̂ has units of force× length/voltage2.

A direct calculation shows that the interface first Piola-Kirchhoff stress
tensor (34) and the Lagrangian interface electric displacement (35) associ-
ated with the interface free energy (36) are given by

Ŝ(X) =
∂Ŵ

∂F̂
(F̂, Ê) =γ̂ ĴF̂

−T
+

µ̂(F̂− F̂
−T

) + Λ̂(Ĵ − 1)ĴF̂
−T

+

ε̂ĴF̂
−T

Ê⊗ F̂
−1

F̂
−T

Ê−
ε̂

2
(F̂

−T
Ê · F̂

−T
Ê)ĴF̂

−T
, X ∈ Γ0 (37)

and “D(X) = −∂Ŵ

∂Ê
(F̂, Ê) = ε̂ĴF̂

−1
F̂

−T
Ê, X ∈ Γ0. (38)
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Remark 6.6. Another direct calculation shows that the interface Cauchy

stress tensor “T = Ĵ−1ŜF̂
T
associated with the free energy (36) reads“T(x) =γ̂ î+ µ̂(Ĵ−1F̂F̂

T
− î) + Λ̂(Ĵ − 1)̂i+

ε̂ F̂
−T

Ê⊗ F̂
−T

Ê− ε̂

2
(F̂

−T
Ê · F̂

−T
Ê)̂i, x ∈ Γ. (39)

This expression makes it plain that the constitutive relation (37) utilized
here to describe the electromechanical behavior of the interfaces generalizes
in three counts the basic constitutive relation of constant surface-tension
stress “T(x) = γ̂ î.

Specifically, the constitutive relation (39) includes Neo-Hookean-type devi-

atoric elasticity, via the term µ̂(Ĵ−1F̂F̂
T
− î), and not just surface tension.

It also accounts for a surface tension that is not necessarily a constant but
instead one that depends on the deformation of the interface via the term
Λ̂(Ĵ − 1)̂i. Finally, the last two terms in the constitutive relation (39) de-
scribe the presence of an interfacial polarization.

Remark 6.7. Thanks to the objectivity of the free energy (36), the consti-
tutive relation (37) satisfies automatically the balance of angular momentum
(24)2 on the interfaces.

7 Governing equations

7.1 Boundary conditions

In terms of the external stimuli applied to the body, we have already
described the source terms of bulk and interface charges Q and “Q and the
mechanical body force B. We now describe the external stimuli applied on
the boundary of the body.

From an electric point of view, we take that the body is immersed in
a surrounding space, e.g., air, where there is a heterogeneous electric field
E(X) and corresponding electric displacement D(X) that result by the use
of electrodes, where a surface charge density per unit initial area Q is ap-
plied, and/or the nearby presence of polarized bodies and by the interaction
of these with the body. We then have the boundary condition

(I−N⊗N)E = (I−N⊗N)E, X ∈ ∂Ω0, (40)
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or, equivalently,

D ·N = −Q+D ·N, X ∈ ∂Ω0,

over the entirety of the boundary of the domain occupied by the body.
From a mechanical point of view, on a portion ∂ΩD

0 of the boundary ∂Ω0,
the deformation field y is taken to be given by a known function y(X), while
the complementary part of the boundary ∂ΩN

0 = ∂Ω0 \ ∂ΩD
0 is subjected to

a prescribed mechanical traction tm(X). Precisely,

y = y, X ∈ ∂ΩD
0 and SN = tm + SeN, X ∈ ∂ΩN

0 . (41)

In this last expression, Se stands for the Maxwell stress outside of the body.
In the case when the body is surrounded by air,

Se = F−TE⊗D− Jε0
2

Ä
F−TE · F−TE

ä
F−T ,

where D = ε0JF
−1F−TE and where we remark that the deformation gra-

dient F in the air refers to any suitably well-behaved extension of the de-
formation gradient F in the body.

7.2 The choice of independent fields

At this stage, all that remains to formulate a mathematically closed
system of governing equations is to identify the independent fields that we
wish to solve for. Arguably, the most expedient choice of independent fields
for the problem at hand is the deformation field

y(X)

and the electric potential
Φ(X).

Recall that the rest of fields can be written in terms of these two as follows:



F = ∇y

F̂ = FÎ

E = ∇Φ

Ê = ÎE

,



S =
∂W

∂F
(X,F,E)

Ŝ =
∂Ŵ

∂F̂
(F̂, Ê)

D = −∂W

∂E
(X,F,E)“D = −∂Ŵ

∂Ê
(F̂, Ê)

,



ρ = J−1ρ0

T = J−1SFT“T = Ĵ−1ŜF̂
T

d = J−1FD

d̂ = Ĵ−1F̂“D
e = F−TE

ê = F̂
−T

Ê

ϕ = Φ

.
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7.3 The strong form of the governing equations

Granted the choice of the deformation field y(X) and the electric poten-
tial Φ(X) as the independent fields, the equation of conservation of mass
(5) and Faraday’s law (14) are automatically satisfied. Granted the use
of objective free energies W (X,F,E) and objective interface free energies

Ŵ (F̂, Ê), such as (27) and (36), the equations of balance of angular momen-
tum (24) are also automatically satisfied. Thus, Gauss’s law (11) and the
balance of linear momentum (21) are the only two sets of balance principles
that need to be solved.

Substitution of the constitutive relations (28), (29), (37) and (38) for the
bulk and interfaces in Gauss’s law (11), the balance of linear momentum
(21), and the boundary conditions (40) and (41), together with use of the
notation E = ∇Φ(X), yields the following governing equations

Div

ï
−∂W

∂E
(X,∇y,∇Φ)

ò
= Q, X ∈ Ω0 \ Γ0

D̂iv

ñ
−∂Ŵ

∂Ê
(“∇y,“∇Φ)

ô
−

s
−∂W

∂E
(X,∇y,∇Φ)

{“N = “Q, X ∈ Γ0

Φ(X) = Φ(X), X ∈ ∂Ω0

(42)

and

Div

ï
∂W

∂F
(X,∇y,∇Φ)

ò
+B = 0, X ∈ Ω0 \ Γ0

D̂iv

ñ
∂Ŵ

∂F̂
(“∇y,“∇Φ)

ô
−

s
∂W

∂F
(X,∇y,∇Φ)

{“N = 0, X ∈ Γ0

y(X) = y(X), X ∈ ∂ΩD
0ï

∂W

∂F
(X,∇y,∇Φ)

ò
N = tm(X) + SeN, X ∈ ∂ΩN

0

(43)

for the deformation field y(X) and the electric potential Φ(X).
Equations (42)-(43) constitute a generalization of the classical governing

equations for heterogenous elastic dielectrics under quasistatic deformations
and quasistatic electric fields that accounts for: (i) the presence of resid-
ual stresses (in the inclusions) and (ii) jump conditions across material
(solid/liquid) interfaces that are not algebraic but, instead, are described
by PDEs (partial differential equations) that result from the presence of
interfacial polarization and forces.
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7.4 Residual stresses

In the initial configuration, prior to the application of the charges Q, “Q,
the body force B, and the boundary conditions y, tm, and Se, the defor-
mation field y(X) = X and the electric potential Φ(X) = 0 and hence the
governing equations (42)-(43) reduce to

Div [ri(X)I] = 0, X ∈ Ω0 \ Γ0

γ̂ D̂iv Î− Jri(X)K“N = 0, X ∈ Γ0

, (44)

which can be viewed as the definition of the hydrostatic residual stress
ri(X) within the inclusions required to balance out the interfacial forces.
Recognizing that Jri(X)K = ri(X) and that

D̂iv Î = −∇(“N⊗ “N) · Î = −(̂I · ∇“N)“N = −(tr“∇“N)“N = 2κ“N
in terms of the mean curvature κ = −tr“∇“N/2 of the interfaces, equations
(44) can be rewritten more explicitly as ∇ri(X) = 0, X ∈ Ω0 \ Γ0

ri(X) = 2κγ̂, X ∈ Γ0

. (45)

The PDE (45)1 states that the hydrostatic residual stress ri(X) must be
constant — possibly a different constant — within each inclusion. In view
of the boundary condition (45)2, which is nothing more than the standard
Young-Laplace equation, a solution to the boundary-value problem (45)
then only exists for the case when all M inclusions have shapes of constant
mean curvature (Kenmotsu (2003)), for only then (45)2 is consistent with
(45)1. Physically, as alluded to in Remark 6.1, this result implies that
to deal with liquid inclusions of general initial shape, one would have to
account for residual stresses in the elastomeric matrix and not just within
the inclusions.

Remark 7.1. The prototypical case of elastomers filled with liquid inclu-
sions that have constant mean curvature — and hence for which the gov-
erning equations (42)-(43) apply — is that of elastomers that are filled with
liquid inclusions that are initially spherical in shape. For these, the solution
to (45) simply reads

ri(X) = −
M∑
j=1

θi,j0 (X)
2 γ̂

Aj
,

where Aj denotes the initial radius of the jth inclusion.
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Appendix A. Gauss’s law in Lagrangian form

On substitution of the definitions Q = Jq, D = JF−1d, “Q = Ĵ q̂, and“D = ĴF̂
−1

d̂ in the Eulerian form (10) of Gauss’s law, we have



∂

∂xk

[
J−1FkmDm

]
= J−1Q, x ∈ Ω \ Γ

∂

∂xl

î
Ĵ−1“Fkm

“Dm

ó
îkl − JJ−1FkmDmKn̂k = Ĵ−1“Q, x ∈ Γ

∂

∂xk

[
J−1FkmDm

]
= 0, x ∈ R3 \ Ω

JJ−1FkmDmKnk = 0, x ∈ ∂Ω

, (46)

where, again, by F in R3 \ Ω we mean any suitably well-behaved extension

to R3 of the deformation gradient F in the body. Given that div
î
J−1FT

ó
=”div [Ĵ−1F̂

T
]
= 0, equations (46) simplify to



J−1Fkm
∂Dm

∂xk
= J−1Q, x ∈ Ω \ Γ

Ĵ−1“Fkm
∂“Dm

∂xl
îkl − JJ−1FkmDmKn̂k = Ĵ−1“Q, x ∈ Γ

J−1Fkm
∂Dm

∂xk
= 0, x ∈ R3 \ Ω

JJ−1FkmDmKnk = 0, x ∈ ∂Ω

.

By employing now the chain rule and the identities n = |JF−TN|−1 JF−TN,

F̂
−1

= F−1 î, and n̂ = Ĵ−1 JF−T“N together with the fact that JiFi−T“N =
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JmFm−T“N, we obtain

∂Dm

∂Xn
F−1
nk Fkm = Q, X ∈ Ω0 \ Γ0

∂“Dm

∂Xn

“F−1
nk
“Fkm − JDkK“Nk = “Q, X ∈ Γ0

∂Dm

∂Xn
F−1
nk Fkm = 0, X ∈ R3 \ Ω0

JDkK“Nk = 0, X ∈ ∂Ω0

.

Finally, recognizing that F̂
−1

F̂ = Î, Gauss’s law in Lagrangian form (11)
readily follows:

∂Dm

∂Xm
= Q, X ∈ Ω0 \ Γ0

∂“Dm

∂Xn
Îmn − JDkK“Nk = “Q, X ∈ Γ0

∂Dm

∂Xm
= 0, X ∈ R3 \ Ω0

JDkK“Nk = 0, X ∈ ∂Ω0

.

Appendix B. Faraday’s law in Lagrangian form

Direct use of the definition E = FTe and the transformation rule dx = FdX
for material line elements allows to recast the integral form (12) of Faraday’s
law as

�
∂Σ

e · dx =

�
∂Σ0

E · dX = 0. (47)

By making use of Stokes’s theorem

�
Σ0

(CurlE) · ‹N dX =

�
∂Σ0

E · dX+

�
∂S0

JEK · dX,

this time around in the initial configuration, the Lagrangian localized form
(14) of Faraday’s law readily follows from (47).
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