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ARTICLE INFO ABSTRACT

Keywords: In this paper, we introduce an Abaqus UMAT subroutine for a family of constitutive models
Elastomers for the viscoelastic response of isotropic elastomers of any compressibility — including fully
Rubber blends

incompressible elastomers — undergoing finite deformations. The models can be chosen to
account for a wide range of non-Gaussian elasticities, as well as for a wide range of nonlinear
viscosities. From a mathematical point of view, the structure of the models is such that the
viscous dissipation is characterized by an internal variable C’, subject to the physically-based
constraint det C’ = 1, that is solution of a nonlinear first-order ODE in time. This ODE is solved
by means of an explicit Runge-Kutta scheme of high order capable of preserving the constraint
det C” =1 identically. The accuracy and convergence of the code is demonstrated numerically
by comparison with an exact solution for several of the Abaqus built-in hybrid finite elements,
including the simplicial elements C3D4H and C3D10H and the hexahedral elements C3D8H and
C3D20H. The last part of this paper is devoted to showcasing the capabilities of the code by
deploying it to compute the homogenized response of a bicontinuous rubber blend.

Finite deformations
Hybrid finite elements
Stable ODE solvers

1. Introduction

Over the past three decades, primarily because of their superior numerical tractability, constitutive models based on internal
variables [1-8] have established themselves as the preferred choice over models based on hereditary integrals [9-11] to describe
the mechanical dissipative response of polymers, hydrogels, soft biological tissues, and other soft organic materials.

In this context, the objective of this work is to put forth an Abaqus UMAT (user material) subroutine for a family of
internal-variable-based constitutive models for the finite viscoelastic response of elastomers, that introduced by Kumar and Lopez-
Pamies [6]. Such models can be derived within the so-called two-potential framework [6,12,13] and hence are characterized by
two thermodynamic potentials: (i) a free-energy function y that serves to characterize how the material stores energy through
elastic deformation and (ii) a dissipation potential ¢ that serves to characterize how the material dissipates energy through viscous
deformation. A distinguishing advantage of this approach is that it allows to enforce material frame indifference, material symmetry,
and entropy imbalance from the outset in a straightforward manner [6,14].

The focus of this paper is on models for isotropic elastomers of any compressibility, including fully incompressible elastomers.
By construction, the models allow to describe the elasticity of these materials in terms of an initial bulk modulus « € (0, +) and
two non-Gaussian stored-energy functions ¥¥4 and ¥NF4 of choice. They also allow to describe their viscosity in terms of a nonlinear
viscosity function # of choice.
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From a mathematical point of view, the structure of the models is such that they provide the first Piola—Kirchhoff stress S(X, 7)
at any material point X and time ¢ explicitly in terms of the deformation gradient F(X,¢), a pressure field ¢(X,7), and an internal
variable C¥(X, 1), subject to the constraint' det C¥(X,¢) = 1, that is solution of a nonlinear first-order ordinary differential equation
(ODE) in time. The fact that the internal variable C" satisfies the non-convex constraint det C” = 1 poses one of the main difficulties.
Indeed, as is well-known from the classical literature on finite plasticity [15], commonly used time integration schemes are unable
to deliver solutions that satisfy such a constraint. In this work, we handle this challenge by making use of a time integration scheme
based on an explicit fifth-order-accurate Runge-Kutta integrator capable of preserving the constraint det C* = 1 identically [6,16,17].

The organization of the paper is as follows. We begin in Section 2 by formulating the finite viscoelastostatics problem of interest
in this work. The family of finite viscoelasticity models under consideration are introduced in Section 2.2, while the final set of
the governing equations that they lead to for the deformation field y(X,7), the pressure field ¢(X,7), and the internal variable
CY(X, 1) is presented in strong form in Section 2.5. In Section 3, we present the discretization in time and space of the weak
form of the governing equations. In particular, we make use of a FD (finite difference) discretization of time and a FE (finite
element) discretization of space. In Section 4, we describe the inputs needed for an Abaqus UMAT subroutine in order to solve
in Abaqus the discretized governing equations laid out in Section 3. In Section 5, we demonstrate the accuracy and convergence of
the proposed Abaqus UMAT subroutine. Finally, in Section 6, we showcase the capabilities of the subroutine by solving a problem
of both fundamental and practical interest, that of the homogenization of the finite viscoelastic response of a bicontinuous rubber
blend.

2. The problem
2.1. Initial configuration and kinematics

Consider a body made of an elastomer that in its initial configuration, at time ¢ = 0, occupies the open domain Q, c R3,
with boundary 0, and outward unit normal N. We identify material points by their initial position vector X € Q,. At a later time
t € (0,T1], in response to the boundary conditions and body forces described in Section 2.3 below, the position vector X of a material
point occupies a new position x specified by an invertible mapping y from Q to the current configuration Q(f) C R?. We write

x =yX,1)

and the associated deformation gradient and Lagrangian velocity fields at X € £, and ¢ € (0,T] as
0 0
F(X,1) = Vy(X, 1) = a—)y((x, n o and VX0 =yX1) = a_Z(X’ 0.

Throughout, we shall use the “dot” notation to denote the material time derivative (i.e., with X held fixed) of field quantities.
2.2. Constitutive behavior

As anticipated in the Introduction, the focus of this work is on viscoelastic isotropic elastomers whose isothermal mechanical
behavior is described in terms of two thermodynamic potentials, a free energy function of the form [6]

w(F,CY) = yHI(F) + y"FIEF, CV) @
that describes how the elastomer stores energy through elastic deformation and a dissipation potential of the form
%C" -AF,CYH)C? if detCl =1
$F,C",C") = )
+0o0 otherwise
that describes how the elastomer dissipates energy through viscous deformation. In these expressions, the symmetric second-order
tensor CV is an internal variable of state that stands for a measure of the “viscous part” of the deformation gradient F, w4 is a
non-negative function that characterizes the elastic energy storage in the elastomer at states of thermodynamic equilibrium, the
non-negative function w4 characterizes the additional elastic energy storage at non-equilibrium states (i.e., the part of the energy
that gets dissipated eventually), and the fourth-order tensor A characterizes the (deviatoric) viscosity of the elastomer; see Fig. 1
for a rheological representation of w4, wNE9, and ¢.

For consistency with the type of constitutive relations that can be implemented as Abaqus UMAT subroutines, we consider
equilibrium and non-equilibrium stored-energy functions of the form

wEIF) = PRI ) + gu — 12
)
wNEU(F, CY) = PNEA(T )

1 Physically, the constraint det C’ = 1 describes that viscous dissipation in elastomers is an isochoric process.
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Fig. 1. Rheological representation of the two-potential model (7)-(8).

and viscosity tensors of the form

—e —e
(@, T, 10

Ay (F.€*) = — ==L clerl. @

In these expressions,

Iy =trC, J=+/detC

I, =urC=J2°

IV =t ,

rr=u(cc), =3[t -cle ce]

—e _ —e _

I, =J72818, T,=J0731¢

where C = F'F, C=J"% 3¢, €V = FUTFY, and %9, YNE4  are non-negative material functions of their arguments, while « is a
non-negative material constant. The latter describes the compressibility of the elastomer in a monotonically increasing fashion,
in particular, the larger the value of x the more incompressible the elastomer is. The choice k = +oo corresponds to a fully
incompressible elastomer. In this formulation,? the material constant « is in fact the initial bulk modulus of the elastomer in the
limit of small deformations as F — L.

Granted the two thermodynamic potentials (1) and (2), it follows that the first Piola—Kirchhoff stress tensor S at any material
point X € @, and time ¢ € [0, T] is expediently given by the relation [6]

oy
SX,1) = —=(F,C"), 5
(X, 1) aF( ") (5)
where CV is implicitly defined by the evolution equation
;gu (F,C) + %(F, C’,CY) =0
. (6)
C'X,0)=1

Making explicit use of the representations (3)—(4), the constitutive relation (5)-(6) specializes to

SX, 1) = 2J’2/3’I’7EqF + 2J’2/3‘PI£EqFC”_1 - %J’w (Iﬂ'?q + ITW;E‘*> F7T 4+ - JFT, @)
1 1

1 1

where CV is defined implicitly as the solution of the evolution equation®
C'(X, 1) = G(C,CY)

2]—2/3¥/NEq

ETII[C—%(C~C”_1)C“] : ®

C'(X,0)=1

2 We emphasize that the compressibility contribution x/2(J — 1) to the equilibrium stored-energy function (3) is just a constitutive choice, arguably, the
simplest among many others. Indeed, one can replace it with any other strictly convex function of J of choice, provided that it linearizes properly. For instance, if
one wishes to enforce material impenetrability with the requirement that w8 / +c0 as J \, 0, one can replace x/2(J —1)*> with —AInJ +A(J = 1)+(x = A)/2(J = 1),
where A is a material constant such that ¥ > A > 0.

3 Here, it is worth remarking that the stress-deformation relation (7) depends on C’ only through its inverse C*~' and that, in turn, the ODE (8), can be

rewritten solely in terms of C*~': = —G(C-'ccv!, ¢!, When implementing (7)-(8) numerically, one can hence write the equations in terms of D = C”!
and thereby circumvent having to perform inversions of the internal variable. This is in fact how we have coded (7)—(8) in the proposed UMAT subroutine.
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In these last expressions and below, we make use of the notation f, = df(x)/dx and f,, = d*f(x)/dx.
The following remarks are in order:

Remark 1. The Cauchy stress tensor T(x,?) = J~'SF” at any spatial point x € 2(¢) and time ¢ € [0, T] is given by

T(x, 1) = 2J’5/3¥’7EqFFT + 2J’5/35”[£EqFC”_1FT - <§J’5/3I| Y’YEC‘ + %J’5/3If9¢fq —x(J - 1)) L
1 1 1 1

When decomposed into deviatoric and volumetric contributions, it reads

T(x,t) =dev T+ pl
with

p= %trT:;c(J—l) 9
and

%J‘S/ 31, EPTEqI + 21—5/3511;‘5ch”*1 - %J‘S/ 31164/;"3"1 .
1

1 1

devT = 2J‘5/3¥’;:qFFT -
1

dev TE4 dev TNEq

Remark 2. The stored-energy functions ¥4 and ¥NF4 in the constitutive relation (7)-(8) are arbitrary functions of the invariants
- —e
I, and I,. They can thus be chosen as the basic Neo-Hookean or Gaussian stored-energy functions

NE
uNEa

_ Eq _ — —
wEI(T)) = MT [11 - 3] and  WNE(T) = T, - 3] ,
where ;F4 and NP4 are material constants, or, more generally, as any of the numerous non-Gaussian I;-based models available
in the literature [18-23]. In the representative results that we present in Sections 5 and 6 below, we make use of the two-term
Lopez-Pamies stored-energy functions [23]

2
— 31—11, —a,
YR = Y S ﬂ,[zf —3ﬂr] (10)
r=1 &y

and

2
—e 31_”1‘ —ea
v/NEq(ll)=z o m,[l1 —3”r], an
r=1 r
where u,, a,, m,, a, (r =1,2) are material constants.

Remark 3. The viscosity function # in the evolution equation (8) is an arbitrary isotropic function of the invariants 761‘, 7;, 711). It can
thus be chosen as a constant or, more generally, as needed to describe the viscosity of the elastomer at hand. Typically, elastomers
exhibit a strongly nonlinear viscosity of shear-thinning type; see, e.g., [6,24-28]. In the representative results that we present in
Sections 5 and 6 below, we make use of the shear-thinning viscosity function introduced by Kumar and Lopez-Pamies [6]:

M=+ Ky 17 =391

—e —e
Ny, 1y, 1)) = ne + (12)
NEq b
1+ (K™
with
NE 1 E E ) (Ti)z —e NE 2
I = —devTNE  dev TN =472 —— -1, | (P ) .
2 2 3 T,
where 7, 1., K;, Ky, B, B, are material constants.
Remark 4. The ratio
n (13)

T = ——
NE

2y

[l

in the evolution equation (8) describes the spectrum of material time scales characteristic of the elastomer at hand.

Remark 5. The constitutive relation (7)—(8) is nothing more than a generalization of the classical Zener or standard solid model [29]
to the setting of finite deformations [6]. Fig. 1 illustrates its rheological representation.

Remark 6. The constitutive relation (7)-(8) includes two fundamental models as limiting cases. The first one, which corresponds
to setting the viscosity function either to # = 0 or # = +oo, is that of a non-Gaussian elastic solid, wherein a Gaussian elastic solid is
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included as a special case. The second one, which corresponds to setting the equilibrium and non-equilibrium energies to w4 = 0
and NP4 = + o, is that of an incompressible non-Newtonian fluid, wherein a Newtonian fluid is included as a special case.

To see the specialization to the non-Gaussian elastic solid, note that when = 0, the solution to the evolution equation (8) is
simply C¥ = C and the first Piola—Kirchhoff stress tensor (7) reduces to the form S(X,7) = 2J~%/ 3¥’EqF p;JFT. Similarly, when

n — +oo, the solution to the evolution equation (8) is C¥ = I + O(3~') and the first Plola—Klrchhoff stress tensor (7) reduces to
SX,t)=2J"2% W’EqF +2J7% 3'I’NEqF p,JFT. In the above expressions, the form of the scalar-valued functions p, and p, of F are

not spelled out for simplicity.

On the other hand, to see the specialization to the incompressible non-Newtonian fluid, note that when ¥4 = 0 and ¥NE4 =
m[7j —3]/2 with m — +oo, the solution to the evolution equation (8) is given C¥ = C + m~!(—yC + ¢;C) + O(m™?) and the first
Piola—Kirchhoff stress tensor (7) reduces to S(X,#) = n(FF~'F~T + F-TF'FT) — ¢,F~T; in these last two expressions, ¢; and ¢, are
arbitrary hydrostatic pressures associated with the incompressibility constraint of the material. Accordingly, the Cauchy stress tensor
T = SF7 specializes to T(x, 1) = 24D — ¢,1, where D = 1/2(FF~! + F-TFT) is the rate of deformation tensor. In the above expressions,
q, and g, are arbitrary hydrostatic pressures associated with the incompressibility constraint of the material.

2.3. Boundary conditions and body forces

The external stimuli applied to the body comprise both prescribed mechanical boundary data and body forces in the bulk.
Specifically, on a portion 6.(20D of the boundary 002, the deformation field y(X,) is taken to be given by a known function y(X, 1),
while the complementary part of the boundary a.Qé‘/ =08\ aQOD is subjected to a prescribed nominal traction s(X, 7). That is,

X0 =yX,0,  (X,1) €090Q)x[0,T]
SX,HN =sX,1n), X,ne€e 09(4\/ x[0,T]
Throughout £, we also consider that the body is subjected to a mechanical body force with density
b(X,1), X, € Q,x[0,T].
2.4. Governing equations: The deformation-based formulation

Absent inertia, the relevant equations of balance of linear and angular momenta read simply as DivS + b = 0 and SF” = FS”
for (X,1) € 24 x [0,T]. The latter is automatically satisfied by virtue of the objectivity of the functions (3) and so the governing
equations for the response of the body reduce to the following initial-boundary-value problem:

Div [2J’2/3’l’?qu + 2J*2/37’?L,EquC”’1 - 51*2/3 (1 pha 1@!1/NE"> vy T+
1 1
k(I =DIVYyT|+b=0,  (X,1)€ 2y x[0,T]
yX, 0 =y(X,1), X1 € 0-(2(? x[0,T]

P 14
[2J-2/3Wquy + 2J-2/3W;E‘*Vycv-‘ - %J—w <II'I’7Eq + I;’Wf‘*) vy T+
1 1 1

k(= DIVYy TIN=5X.0,  (X,1) €02} x[0.T]

yX,0) =X, X e Q,
coupled with the evolution equation
C' (X, =G (Vy'Vy,C"), (X,1) € 2,x[0,T]

(15)
CX,0=1, Xe

for the deformation field y(X,¢) and the internal variable C’(X, ?).
2.5. Governing equations: The hybrid formulation

In order to deal with nearly or fully incompressible elastomers, it is convenient to deal not with Egs. (14)-(15) directly, but
with an alternative set of governing equations wherein a pressure field (and not just the deformation field) is also an unknown.
Much like in the simpler setting of elasticity [30-32], as outlined next, the derivation of such a mixed set of equations hinges on
the introduction of an appropriate Legendre transform [27].

Consistent with the way in which Abaqus deals with nearly incompressible materials, consider the following function

W, T,,J) =1 + PN(T)) + g(J -1 (16)
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alongside its partial Legendre transform

W*(Tl,Tf,q)=mJax{q(J— - W(TI,TT,J)}. a7
Since W(Tl,f?, J) is convex in its third argument, it readily follows that

W, 1,,0)= (W) T,,1,,)

- —e
=max {q/ - )= W*T,. T .0}
q

In turn, it follows that the first Piola—Kirchhoff stress tensor (5) can be rewritten in terms of the dual function (17) as

W = < g
SX.0) =~ (I 1))+ JF "

with (18)

ow

dq

Making direct use of the specific form (16) of the function W, a straightforward calculation shows that its partial Legendre
transform (17) is given by

* — —e
J=1+ (Il,Il,Q)

2
- —e q — —e
W1, g) = o = PRI = W),
and, hence, that the constitutive relation (18) can be written more explicitly as

SX,n = 21*2/39!/75“'F + 2J’2/3¥’;EqFC”‘1 - %J*M (M'fq + Iqu;‘iq> F T +qJFT
1 1 1

with 19

J=1+21
K

Granted the hybrid representation (19) for the stress-deformation relation of the material, the governing equations for the
response of the body can be recast as the following initial-boundary-value problem:

Div 2]‘2/3¥’;:qu + 2J‘2/3Y’;EquC”‘] - %J‘Z“ <I] qf;q + IfT;Eq> vy T+
1 1 1 1
@JVy Tl +b=0, (X,1)€Q,x[0,T]
detVy—1-2 =0,  (X.neQ,x[0.T]
K
1 ¥X. ) =yX,n, X, 1) € 02P x[0,T] (20)
21*2/3¥/§ny + 2J*2/3¥’;EquC“’l - %.172/3 < 11T7Elq + 15?{5@) vyT4
1 1

gIVy TIN=5X.n.  (X.€ Q) x[0.T]

yX,0) =X, X e Q,
coupled with the evolution equation (15), repeated here for convenience,
CvX,n =G (VyT'vy,C¥), (X,1)€2yx[0,T]

21
CX.0=1 Xe

for the deformation field y(X,), the Legendre dual field ¢(X,¢), and the internal variable C’(X,1).

Remark 7. The Legendre dual field ¢ in (20) is nothing more that the volumetric part (9) of the Cauchy stress tensor. In other
words, the Legendre variable ¢ is equal to the Cauchy hydrostatic pressure
1

=p=-trT.
q=p 3r

3. The time and space discretizations

Next, consistent with the way in which Abaqus solves initial-boundary-value problems, we discretize the governing equa-
tions (20)—(21) in time with FD and in space with FE. We begin in Section 3.1 by rewriting (20) in weak form. In Sections 3.2 and
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3.3, we introduce the time and space discretizations one at a time. We conclude this section by outlining the method of solution for
the fully discretized governing equations.

3.1. Weak form of the governing equations

A standard calculation shows that the weak form of the initial-boundary-value problem (20)-(21) specializes to finding y(X,¢) €
U and ¢(X, ) € V such that

a

2J‘2/3‘{’;:qu + 2J‘2/3¥’;EquC”_] - %J‘2/3 (111{/;3" + 1fl[/?f“> vy T+
1 1 1 1

qJVyT] - vwdX :/

h~de+/ s-wdX, Yw e Uy, t € X[0,T]
2 N 0 (22)

/(detVy—1—2>rdX, Vrev, tex|0,T]
2 K

with CY(X,7) defined by (21), where U and V are sufficiently large sets of admissible deformation y and pressure g fields. Similarly,
U, stands for a sufficiently large set of test functions w. Formally, V" = {y : yX,1) = yX.,?), X € 09(?} and V) = {w : wX,1) =
0, X € 00QP}.

’ 0

3.2. Time discretization
Consider now a partition of the time interval [0,T] into discrete times {#,},_o ., With t, = 0 and ¢), = T. Making use of

the notation y, (X) = yX.#,), ¢,(X) = ¢(X, 1), Cl(X) = C'X, 1), and similarly for any other time-dependent field, the governing
equations (22) with (21) at any given discrete time 7, take then the form

-2/3,,E —2/3,1yNE -1 2 .-2/3 E NE _
/ [ZJk Pt vy + 20w vyt - 20 <11k'1'7q I >VykT+
Q) 1k 1 1k 1 k
a . Vy: T -deX=/ b ~de+/ 5, - wdX, Yw € U,
kS VY ] 2 k oggv’ k 0 23)
/ (detVyk—l—q—k>rdX:O, Vrey
2 K
and
CV(X) = G(Vy] X)Vy,(X),CV(X)), X € Q,, 24)

where we emphasize that we are yet to spell out a specific time discretization for the time derivative CZ in terms of Cj.
3.3. Space discretization
Consider next a partition "Q; = Uf‘;l £© of the initial configuration €2, that comprises N, non-overlapping finite elements £,

Given this partition, we look for approximate solutions "y, (X) and "¢, (X) for the deformation y,(X) and pressure g, (X) fields at
time #, in finite dimensional subspaces of conforming finite elements. It follows that "y, (X) and "¢, (X) admit the representations

NH
X =Y INOX) (25)
n=1
and
Nl{
g X)= Y "NIX)q (26)
I=1

in terms of the global degrees of freedom y](("” and q,(f), at time 1, and the associated shape functions " N (X) and hN;[)(X) that
result from the assembly process. In these last expressions, N, and N, stand for the total number of nodes in the partition hQ, and
the total number of degrees of freedom for the approximation "¢, (X) of the pressure field, respectively.

Remark 8. The shape functions * N (X) and hN;”(X) in (25)—(26) must be appropriately selected so that they lead to a stable
formulation and hence to a scheme that can generate converging solutions [33]. In two recent contributions, we have made use of a
class of Crouzeix—Raviart conforming finite elements [27], as well as of a choice of elements with bubble functions [17] determined
from the so-called variational multiscale method [34,35], that lead indeed to stable formulations. In this work, we make use of the
hybrid elements built in Abaqus.
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By making use of the representations (25)-(26), and analogous ones for the test functions w and r, Egs. (23) reduce to a system
of nonlinear algebraic equations for the degrees of freedom y('") and ql((l) that depend on the values, say hCZ, of the internal variable
C] at the Gaussian quadrature points employed to carry out the integrals in (23). We write this system as

G ("ye"q."CY) =0. (27)

Similarly, we write the system of nonlinear algebraic equations that results from (24) for the internal variable "CZ at the Gaussian
quadrature points as

6, ('€ €}) =0 @9
3.4. The solver: an iterative scheme with a fifth-order explicit Runge—Kutta integrator

Having discretized the governing equations (20)-(21) into the system of coupled nonlinear algebraic equations (27)-(28) for the
global degrees of freedom yj('"), q,(("), and the internal variable "CZ at the Gaussian quadrature points at time 7,, the final step is to
solve these for given stored-energy functions &4, WYNE4 given initial bulk modulus «, given viscosity function #, given boundary
data y and s, and given body force b.

Consistent with the Newton-Raphson-type solvers employed by Abaqus, we consider an iterative scheme, one in which at every
time step 7, the discretized equations (27) and (28) are solved iteratively until convergence is reached. The algorithm goes as follows:

- Step 0. Set r = 1 and define appropriate tolerances TOL, and TOL,. For a given solution *y,_,, "¢,_,, and "C;_l at time 7,_,

define also "y, ,_; = "Yeet, "Gpr = "g4_1, and hCZ, 1= hCU

+ Step 1. Given the boundary data y, s, and body force b at 1, make use of one iteration within a Newton-Raphson solver to
find "y, . and #q; . such that

gl (hyk,r» hqkﬂr’ hc/i.rfl ) =0. (29)

+ Step 2. Having determined "y, , and "¢, , from the sub-problem (29), find hC;’ . such that

G (hyk’,, v r,hC;’r) —o. (30)

* Step 3. 1 1l Gy ("Yips "airs "CL) I/ 1 G1(Pigs "0 "CY ) I TOL, and || Gy "y, "€y CY ) 11/ Il 6oy "€y, "€ NI
TOL,, then set "y, ="y, , "q, ="q,,, "C! ="C? , and move to the next time step 7,,; otherwise set r « r+ 1 and go back
to Step 1.

The sub-problem (30). The sub-problem (30) corresponds to a nonlinear system of first-order ODEs wherein the incompressibility
constraint det hC” = 1 is built-in. Because of the requirement of satisfying this nonlinear constraint along the entire time domain,
as already remarked in the Introduction, extreme care must be exercised in the choice of the time-integration scheme. In this work,
following in the footsteps of [6,17], we make use of the explicit fifth-order Runge-Kutta scheme

1

hcv —
Y (det Ay )

Ak-tr (€20

with

At
A, =m0+ 9—6‘ (7G| +32G; + 12G4 + 32G5 + 7Gg) (32)

G, =G (V'y,_."C_)).

1 1 A1y
G2 =G <§Vhyk_| + EVhyk'r’hCZ—l + G] T) N
3 1 Aty
G; =G <ZVhyk_l + ‘-‘v"y,(,,,"c;_1 +(3G, +G,) E) ,
1 1 Aty
G, =G <§Vh)’k—1 + EVhYk,nhCU +Gy; —= > ) ,
1 3 Aty
Gs = (Zv"y,(,l + Zv”y,”,hcz_l +3(=G, + 2G5 + 3Gy) F) ,
hy hev Al
G =G ( V"y;,."C!_| + (G| +4G, + 6G; — 12G, + 8Gs) =)

Aty =t —t,_;, and where we recall that the function G is defined by (8).
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Remark 9. The scheme (31)-(32) is a modification of a scheme originally introduced by Lawson [16] that has the distinctive merit
of preserving the constraint det "CZr =1 identically [17]. Recent numerical experiments [17,27,28] have shown that (31)-(32) is a
highly performant scheme, thus its use here.

Remark 10. The time increment At, =1, —#,_; in (31)-(32) must be chosen to be sufficiently small relative to the material time
scale (13) in the evolution equation (8). In practice, it suffices to set Ar, < 10~2z. Note that for the explicit scheme used here, the
choice of Ar; indirectly sets the value of TOL, in Step 3 above. For other schemes, such as implicit and/or adaptive schemes, the
value of At, could be adjusted in terms of a desired TOL,.

4. The UMAT implementation

The discretized governing equations (29) and (30) can be assembled and solved in Abaqus by making use of a UMAT subroutine
in conjunction with hybrid finite elements.

In particular, on one hand, the Runge-Kutta scheme (31)-(32) can be directly coded within the UMAT subroutine to solve
Egs. (30) for the values hCz , of the internal variable C; at the Gaussian quadrature points at any time increment #, and
Newton-Raphson iteration r.

On the other hand, to solve Egs. (29) for the degrees of freedom yj{") and qf{[) describing the FE approximations *y,(X) and
g, (X) for the deformation and pressure fields at the time increment ,, Abaqus requires to code within the UMAT subroutine the
stress-deformation relation of the material and its derivatives with respect to the deformation in a certain format. Specifically, one
must define the Cauchy stress

T =277/ Y2FF + 2J‘5/3'{’;EqFC”_1FT - <%J‘5/3lll]’?’ + %J—5/311“v';j,5‘*> I+x(J - DI
1 1 1 1
in terms of the deformation gradient tensor F, the variable
T=1+4
K
and the internal variable C. For the derivatives of the stress-deformation relation, one must define the volumetric moduli
A 2 ~ e
R=uL [E(J— 1)2] —xs and 2K _o
aJ2 12 oJ
as well as the tangent modulus
1 d(dev 7; ) o(dev 7; )
ﬁ < oF, kr r aFlr

- - —e —e
— 1 — 1 —e 1 —e 1
_17-1wEa 1 1 —1gwNEq 1 1

Lijw = Fkr) + K66y

B [ (s T s m s asm )2 (% -\, 2=
27w |5 (8B + 8B+ 84 B+ 8B ) = 5 (Biydua +8,Bu ) + 51188
207N (L (5,5 + 6,8 + 6,8+, ) - = (B, B, )+ T,

st [5 (6wB;, + 6By + 6B + 6,8y ) = 5 (Byjbu + 6,8, ) + 5 18,8 + KT 3,8

in terms of the deviatoric part of the Kirchhoff stress tensor r = JT and the alternate bulk modulus K=xJ , where, for simplicity,
we have made use of the notation B = J=2/3FFT and B = J=2/3FC?~'F7.

As an example that contains all nonlinearities, we have implemented the UMAT subroutine for the case when the equilibrium ¥*4
and non-equilibrium ¥NF4 stored-energy functions are given by (10) and (11) and the viscosity # is given by (12). The subroutine
is available in GitHub.*

5. Error analysis

In this section, we demonstrate the accuracy and convergence properties of the proposed UMAT subroutine by first performing a
patch test, where the fields are homogeneous, and then comparing with an exact solution wherein the fields are non-homogeneous.
Beyond demonstrating its accuracy and convergence, the results serve to illustrate that the subroutine can be used with any of the
hybrid simplicial and hexahedral elements built in Abaqus for 3D problems, as well as with its hybrid 2D quadrilateral axisymmetric
elements.

All the results that are presented in this section pertain to the case when the equilibrium ¥¥4 and non-equilibrium ¥NF4 stored-
energy functions are given by (10) and (11) and the viscosity # is given by (12) with the material constants listed in Table 1. This
choice of constitutive model and materials constants is descriptive of the acrylic elastomer VHB 4910 from 3M [6,36], which is
strongly nonlinear in elasticity and viscosity and hence an ideal test case to probe the accuracy and convergence of the subroutine.

4 https://github.com/victorlefevre/UMAT Lefevre_Sozio_Lopez-Pamies
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Table 1
Values of the material constants in the stored-energy and viscosity functions
(10)-(12) for the acrylic elastomer VHB 4910.

uy = 13.54kPa m; = 5.42kPa 1y = 7014kPas
a; = 1.00 a; =-10 Ny = 0.1kPas
Hy = 1.08kPa m, = 20.78kPa K, = 3507kPas
ay = —2.474 a, =1.948 K, = 1kPa~2

p =1.852

f, =026

5.1. Patch test

For the patch test, we consider a unit cube occupying the domain
Q)={X:0<X;<1,0<X,<1,0<X;5<1}

with respect to the Cartesian laboratory frame of reference {e,,e,,e;} that is subjected to loading/unloading in uniaxial tension at
a constant stretch rate in the e; direction. Precisely, we set the body force to b = 0 and consider that the cube is subjected to the
affine boundary conditions

e -SX,nNe; =0, X=Xe +X,e,
(X, 1) =0, X = Xe; + X,e, e -SX.ne; =0, X=Xe +Xse,

13X = Fay(), X =Xe, + Xpe, +e; ’ e -S(X,ne; =0, X=Xe +Xye,+e3
e, - SX,ne; =0, X=Xe +X,e,+e;

and
SX,1e; =0, X=X,e,+ X;e5
SX,ne; =0, X=e +X,e,+ X;e5
S(X.fe, =0, X =Xe; +Xze; |
SX,1e, =0, X=Xe +e+ X;e;
where

L+dgt, 0<t<

Fy() = with g = 0.05s7".

5= Aot 2 <2
A

Fig. 2 compares with the exact solution the results for the stress component S35 in the cube as computed with the Abaqus hybrid
simplicial elements C3D4H and C3D10H and the hexahedral elements C3D8H and C3D20H. The results in Fig. 2(a) correspond to
a highly compressible elastomer with initial bulk modulus x = y; + u, = 14.62 kPa, while those in Fig. 2(b) correspond to a nearly
incompressible elastomer with initial bulk modulus « = 10*(u; + p,) = 146200 kPa.

It is plain from the comparisons that the code passes the patch test for all four types of elements and both compressibilities.
Many other different types of patch tests (not included here for conciseness of presentation) have corroborated the satisfaction of
this basic completeness requirement for the code.

5.2. The radially symmetric deformation of a spherical shell

In the sequel, we analyze the accuracy and convergence of the solutions generated by the subroutine as the size & of the finite
elements decreases ~ that is, as the total number N, , of degrees of freedom increases — by direct comparison with the exact solution
for one of the few initial-boundary-value problems in finite viscoelastostatics for which an exact solution can be determined in closed
form, that of the radially symmetric deformation of a spherical shell made of an incompressible material [37].

In particular, we consider a spherical shell of initial inner radius A = 0.9 m and initial outer radius B = 1 m. At time ¢ = 0, with
respect to the Cartesian laboratory frame of reference {e,,e,,e;}, the shell occupies the domain

Q,={X:A<R<B} with R=|X|=VX X

Again, much like for the preceding patch test, we take the shell to be made of an elastomer with non-Gaussian stored-energy
functions (10) and (11), and nonlinear viscosity (12), with the material constants listed in Table 1 for the acrylic elastomer VHB
4910. We restrict attention to the limiting case when the elastomer is fully incompressible and hence set k = +oo.

10



V. Lefévre et al. Finite Elements in Analysis & Design 232 (2024) 104114

Lr=p1+ e K =10*(u1 + p12)
I =14.62kPa =146200 kPa
60 J 60 [ 1
5 5]
e 40 | ; o) 40 :
3 2
©n %)
20 F Exact 1 20| —— Exact 1
F — — - C3D4H — — - C3D4H
----- C3D10H ---== C3DI10H
- C3DS8H |1/ /| e C3D8H
[ C3D20H C3D20H
0 I I I I 0 1 L | |
1 1.5 2 2.5 3 3.5 1 1.5 2 2.5 3 3.5
F33 F33
(a) (b)

Fig. 2. Comparison between the FE results obtained with the Abaqus hybrid elements C3D4H, C3D10H, C3D8H, C3D20H and the exact solution for the response
of (a) a highly compressible and (b) a nearly incompressible viscoelastic elastomer — with stored-energy functions (10), (11), viscosity (12), and the material
constants listed in Table 1 — under uniaxial tension loading/unloading at the constant stretch rate |i,| = 0.05 s~1.

The inner boundary of the shell is traction free, while its outer boundary is subjected to a prescribed radial deformation. Precisely,

the boundary conditions are given by

yX, 1) = %X, X,1) € aszg’ x [0,T]
(33)

-SX.0X =0, (X, €02y x[0.T]

where b(¢) is the prescribed value of the outer radius r = |x| of the shell at time ¢ and

000 ={X: R=B} and 02} =(X:R=A}.

5.2.1. The exact solution
Restricting attention to radially symmetric solutions, it follows from the incompressibility constraint det Vy = 1 and the Dirichlet
boundary condition (33), that the deformation field is given by the fully explicit relation [37]

3 p3n1/3
+b(t) B> ‘

yX,1) = AR, DX with MR, 1) = <1 [

In turn, absent body forces, it can be shown from the remaining governing equations that the first Piola—Kirchhoff stress is given

by [37]

S(X,1) = sl(R,t)%X®X+sz(R,t) (1- %X@X) 34)
with
sy (R.1) = A2(R,1) L dWH oz + 2R L oW 0, Az 1) dz (35)
4 zA%(z,1) dA 4 zA2(z1) 04
and
sy(R,1) = A3 (R, 1)s, (R, 1) + 2?/?1“(71 ) (AR, 1) = A75(R, 1)) + 2?/%‘“3‘*(??) <% - %) ,
where

W) = WRIT,),  WNBI(A, A,) = PNEI(T)),

11
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Lt =10s ]
10" b CAX4H .
CAXSH
e
107 .
€p

104 L ]

10° 107 107!

Fig. 3. The error (38) at time ¢ =10 s as a function of the average mesh size h for 2D quadrilateral axisymmetric elements CAX4H and CAX8H.

Ty = (1424924, T; = @A+ 28)/(3*22), T, = (A° +245)/(424%), and T, = (1+249)/4%, and where A,(R,1) is defined implicitly as the
solution of the evolution equation

6
W;E"(TT)AU(R, 1) <’1 R _ 1)
1

. (R, 1)
ho(Ro1) = .
—e —e A"(R,1) . (36)
3n(1,, 15, I 1
A3 (R, 1)
A,(R,0)=1

5.2.2. The FE results versus the exact solution
It follows immediately from the stress relations (34) and (35) that the nominal pressure at the outer boundary of the shell that
results from applying the radial deformation (33), is given by

P(t) =s,(B,1)

2 B Eq 2 B NEq
_ro 1 dw (AR.0)dR + b*(1) 1 ow
B2 Jo RI*(R,1t) di B? RA2(R,t) 04

(A(R, 1), 4,(R,1))dR. 37

In Figs. 3 and 4, we confront with the exact solution (37) the corresponding pressure P”(r) generated by the proposed UMAT
subroutine for several of the Abaqus hybrid elements and a range of finite element sizes & for the case when the shell is deformed
at the constant deformation rate

b(t)= B+ Bigt with Jy=0.05s7".

Remark 11. In order to evaluate the exact solution (37) for the pressure P(r) accurately, several approaches are possible. In this
work, we employ Gaussian quadrature for the second integral in (37), which requires solving the evolution equation (36) for 4,(R;,?)
at each of the Gauss points R;. We do so by making use of the explicit fifth-order-accurate Runge-Kutta scheme of Lawson [16].
For the problem at hand here, Ng,,,, = 100 Gauss points suffice to deliver accurate values (exact to 12 significant digits) for P(z).

Specifically, Fig. 3 presents results for the error

|P(1) — Ph(1)

38
[P 8

€p =
between the FE approximation P”(¢) and the exact solution (37) as a function of the average mesh size h for the cases when the FE
result is computed with the Abaqus hybrid 2D quadrilateral axisymmetric elements CAX4H and CAX8H. The results pertain to the
fixed time 7 = 10 s, which corresponds to the instance at which the deformed outer radius is #(10) = 1.5 m.

Figs. 4(a) and 4(b) present results entirely analogous to those presented in Fig. 3 for the cases when the FE result is computed
with the Abaqus hybrid simplicial elements C3D4H and C3D10H and the hexahedral elements C3D8H and C3D20H, respectively.
All the FE results in Figs. 3 and 4 correspond to structured meshes wherein the elements are approximately of the same uniform
size.

12
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102 Lt =10s | [ t=10s
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Fig. 4. The error (38) at time 7 = 10 s as a function of the average mesh size h for 3D: (a) simplicial elements C3D4H and C3D10H and (b) hexahedral elements
C3D8H and C3D20H.

Fig. 5. Schematics (in the initial configuration) of a bicontinuous rubber blend and of the unit cell Y, that defines its periodic microstructure.

It is immediate from Figs. 3 and 4 that the proposed UMAT subroutine generates solutions that converge to the exact solution
at roughly the expected rates for all six types of elements. It is also clear from the figures that, with the exception of the low-order
simplicial element C3D4H, all other types of elements lead to accurate solutions even for meshes that are only moderately refined.

6. Application to bicontinuous rubber blends

Combined with the ample and well-established capabilities of Abaqus, the UMAT subroutine introduced in this work provides
a powerful tool to study a vast spectrum of problems, such as, for instance, the indentation [38-40], the homogenization [27,28],
and the fracture [41-43] of viscoelastic elastomers, for which one can leverage the capabilities built in Abaqus to deal with contact,
periodic boundary conditions, and cracks.

In this last section, by way of an example to showcase its capabilities, we present an application of the proposed UMAT subroutine
to solve a homogenization problem, that of a bicontinuous rubber blend.

Because of their unique mechanical and physical properties, rubber blends have long been a staple in countless technological
applications. A majority of the rubber blends that are utilized in applications exhibit bicontinuous microstructures, that is, they
are binary mixtures in which each constituent or phase is segregated into an interpenetrating network of two separate but fully
continuous domains that are perfectly bonded to one another [44,45]. The characteristic length scales of these microstructures is
typically in the order of at most a micron and hence they are small enough that the macroscopic behavior (at the length scale of
millimeters and larger) of such blends is expected to be accurately described by a homogenization limit.

13
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6.1. The homogenized viscoelastic response of a bicontinuous blend of Gaussian rubbers with constant viscosity

Following in the footsteps of [46], as illustrated schematically by Fig. 5, we consider the idealization of a bicontinuous rubber
blend as the periodic repetition of a unit cell ), made of two rubber phases — labeled r = 1 and r = 2 — whose initial spatial
distributions at time 7 = 0 are described by the characteristic or indicator functions

0I(X) = 1 if X is in phase r r=1.2. 39)
0 0 else

For clarity of presentation, we take the two rubber phases in the blend to be isotropic and nearly incompressible viscoelastic
solids with Gaussian elasticity and constant viscosity. Accordingly, the first Piola—Kirchhoff stress tensor S at any material point X
and time ¢ is given by [6,27]

S(X,1) =25 (X F, )

-2/3
=J 2B uX)F + J 2P mX)FCU™! - JT (1 u(X) + I¢m(X)) + x(X)(J — DJFT,

where CV is implicitly defined by the evolution equation

J2B3m(X)

CXn =5

[c-3(c e

CU'(X,0) =1

and where u(X) = 0" (X)u® + 65 X)u®, mX) = 6" X) mV + 0 X)m®, k(X) = 65’ XV + 67 (X) £, and n(X) = 61" Xy +
9(()2>(X);1(2) stand for the pointwise equilibrium and non-equilibrium initial shear moduli, the initial bulk modulus, and the viscosity
of the blend.

In this setting, as recently established in [27], the homogenized viscoelastic response of the blend is defined by the relation
between the history of the macroscopic first Piola—Kirchhoff stress tensor

{S@®), t€[0,T]}, S = L./ S(X, 1) dX, (40)
1Yol Jy,

and the history of the macroscopic deformation gradient tensor

(Fo), t€[0.T]}, Fi=— [ FX.ndX, 41
1Yol Jy,

based on the solution for the unit-cell problem
Div [J—2/3 uX)Vy + J2BPmX)vyCcv! — %1—2/3 (LX) + Iem(X)) Vy~ "+

qJVyT] =0, X,1) € Yy x[0,T]

q (42)
detVy—l—m:O, X,1) € Yy x[0,T]
¥yX, 0 =X, Xe
coupled with the evolution equation
. -2/3 X
CU(X, 1= J m(X) [VyTvy _ l (