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Abstract
This paper presents the derivation of the homogenized equations that describe the macro-
scopic mechanical response of elastomers filled with liquid inclusions in the setting of
small quasistatic deformations. The derivation is carried out for materials with periodic mi-
crostructure by means of a two-scale asymptotic analysis. The focus is on the non-dissipative
case when the elastomer is an elastic solid, the liquid making up the inclusions is an elas-
tic fluid, the interfaces separating the solid elastomer from the liquid inclusions are elastic
interfaces featuring an initial surface tension, and the inclusions are initially n-spherical
(n = 2,3) in shape. Remarkably, in spite of the presence of local residual stresses within
the inclusions due to an initial surface tension at the interfaces, the macroscopic response
of such filled elastomers turns out to be that of a linear elastic solid that is free of residual
stresses and hence one that is simply characterized by an effective modulus of elasticity
L. What is more, in spite of the fact that the local moduli of elasticity in the bulk and the
interfaces do not possess minor symmetries (due to the presence of residual stresses and
the initial surface tension at the interfaces), the resulting effective modulus of elasticity L
does possess the standard minor symmetries of a conventional linear elastic solid, that is,
Lijkl = Ljikl = Lijlk . As an illustrative application, numerical results are worked out and
analyzed for the effective modulus of elasticity of isotropic suspensions of incompressible
liquid 2-spherical inclusions of monodisperse size embedded in an isotropic incompressible
elastomer.
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1 Introduction

A series of experimental and theoretical investigations of late have pointed to elastomers
filled with liquid inclusions — contrary to conventional solid fillers — as a new class of
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materials with unique macroscopic mechanical/physical properties [1–6]. Two reasons are
behind such properties.

The first is that the addition of liquid inclusions to elastomers increases the overall de-
formability. This is in contrast to the addition of conventional fillers, which, being typically
made of stiff solids, decreases deformability. Magnetorheological elastomers (MREs) are a
class of materials that makes this dichotomy readily apparent. For instance, while MREs
filled with iron particles are able to undergo very modest deformations even when sub-
jected to large magnetic fields, MREs filled with ferrofluid inclusions are able to undergo
significant deformations when subjected to modest magnetic fields. This is because of the
increased deformability imparted by the ferrofluid inclusions compared to that of iron parti-
cles [4, 5].

The second reason behind the fascinating properties of elastomers filled with liquid inclu-
sions is that the behavior of the interfaces separating a solid elastomer from embedded liquid
inclusions feature their own mechanical/physical behavior, one that, while negligible when
the inclusions are “large”, may dominate the macroscopic properties of the material when
the inclusions are sufficiently “small”. The experiments on a silicone elastomer filled with
ionic-liquid droplets reported in [2] provide a recent visual example of this size-dependent
phenomenon. Precisely, these experiments show that, under the same applied mechanical
loads, droplets with smaller radii undergo significantly smaller deformations. This is be-
cause smaller droplets feature a larger interface stiffness — or, more specifically, a larger
initial elasto-capillary number eCa — that scales inversely proportional with their radius
(see Sect. 4 below).

While the above twofold qualitative understanding is well settled, a quantitative un-
derstanding of the mechanics of elastomers filled with liquid inclusions is yet to be fully
developed. In this context, Ghosh and Lopez-Pamies [7] have recently worked out several
theoretical results aimed at explaining and describing the mechanics of deformation of elas-
tomers embedding liquid inclusions. Inter alia, these include the homogenized equations
that, in the basic setting of small quasistatic elastic deformations, describe the macroscopic
mechanical response of elastomers filled with liquid inclusions that are initially spherical
in shape (see Sect. 3 in [7]). The objective of this paper is to present the derivation of this
homogenization limit. The derivation focuses on materials with periodic microstructure and
is carried out by means of a two-scale asymptotic analysis.

2 The Problem

Consider the boundary-value problem
⎧
⎪⎪⎨

⎪⎪⎩

Div [Lε(X)∇uε] = 0, X ∈ � \ �

D̂iv
[
L̂ε∇̂uε

] − �Lε(X)∇uε�N̂ = 0, X ∈ �

uε(X) = u(X), X ∈ ∂�

(1)

for the displacement field uε(X) ∈ H 1(�;Rn) in an open domain � ⊂ R
n, n = 2,3, with

boundary ∂�. Ghosh and Lopez-Pamies [7] have recently shown that (1) are the equations
that govern the mechanical response of an elastomeric matrix (m) filled with initially n-
spherical1 liquid inclusions (i) of length scale ε subjected to small quasistatic deformations.

1Employing the parlance of geometers ([8], Sect. 7.3), we refer to circles as 2-spheres and to spheres as
3-spheres.
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Here, Lε(X) stands for the modulus of elasticity for the bulk � \ �, which is comprised
of the solid elastomeric matrix and the firmly embedded liquid inclusions, L̂ε denotes the
modulus of elasticity for the interfaces � separating the elastomer from the inclusions, N̂
is the unit normal of � pointing outwards from the inclusions towards the elastomer, and
u(X) is the applied displacement boundary condition (Dirichlet boundary conditions are
assumed for simplicity of presentation). In equations (1), Div stands for the bulk divergence
operator, �·� is the jump operator across the interfaces � based on the convention �f (X)� =
f (i)(X) − f (m)(X), where f (i) (resp. f (m)) denotes the limit of any given function f (X)

when approaching � from within the inclusion (resp. matrix), while ∇̂ and D̂iv stand for the
interface gradient and divergence operators. In indicial notation, with respect to a Cartesian
frame of reference {ei} (i = 1, . . . , n) and help of the projection tensor

Î = I − N̂ ⊗ N̂,

we recall that these interface operators read [9, 10]

(∇̂v
)

ij
= ∂vi

∂Xk

(X)Îkj and
(
D̂iv S

)

i
= ∂Sij

∂Xk

(X)Îkj , X ∈ �

when applied to vector and second-order tensor fields.

Filled Elastomers with Periodic Microstructure For filled elastomers with periodic mi-
crostructure, which are the class of materials of interest in this work, the initial subdomains
occupied collectively by all the inclusions can be expediently described by the characteristic
function

θε(X) =
N∑

I=1

θε
I (X) (2)

in terms of the characteristic functions

θε
I (X) = θI (ε

−1X) I = 1, . . . ,N (3)

for each individual inclusion. Here, θI (y) are Y -periodic functions, with Y = (0,1)n, and N
denotes the number of inclusions contained in the unit cell Y . It immediately follows that
θε(X) = θ(ε−1X), where θ(y) is also Y -periodic. Figure 1 shows a schematic of a filled
elastomer with periodic microstructure in its initial configuration for an illustrative case of
space dimension n = 3 and N= 2 inclusions in Y .

Granted (2)-(3), the modulus of elasticity for the bulk and the interfaces read, respec-
tively, as

Lε(X) = (
1 − θ(ε−1X)

)
L(m) +

N∑

I=1

θI (ε
−1X)

[
n�(i)J + rε

I (A−K+ (n − 1)J )
]

(4)

and

L̂ε = 2 μ̂ε K̂+ 2(μ̂ε + �̂ε)Ĵ + γ̂ ε
(
Â− K̂+ Ĵ

)
. (5)
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Fig. 1 Schematics of the initial configuration � ∈ R
3 of a periodic suspension, of period ε, of 3-spherical

liquid inclusions embedded in a solid elastomer and of its defining unit cell Y = (0,1)3. The radii of the
inclusions are denoted by Aε

I
= εAI and their outward unit normal by N̂. The interfaces separating the

elastomer from the inclusions in � are denoted by �. Within the unit cell Y , the interfaces separating the
elastomer from the inclusions are denoted by G

In relation (4), A, K, J are the orthonormal2 eigentensors

Aijkl = 1

2
(δikδjl − δilδjk), (6)

Kijkl = 1

2

(
δikδjl + δilδjk

) − 1

n
δij δkl, (7)

Jijkl = 1

n
δij δkl, (8)

L(m) is the modulus of elasticity of the elastomeric matrix, which satisfies the standard sym-
metry and positive-definiteness properties

L
(m)
ijkl = L

(m)
klij = L

(m)
j ikl = L

(m)
ij lk, BijL

(m)
ijklBkl ≥ αBpqBpq ∀B ∈R

n×n

and some α > 0, �(i) ≥ 0 is the first Lamé constant of the liquid making up the inclusions,
and

rε
I = − (n − 1) γ̂ ε

Aε
I

, I = 1, . . . ,N, (9)

denotes the initial hydrostatic stress that the I th inclusion is subjected to in the initial con-
figuration. In this last expression, γ̂ ε stands for the initial surface tension on the interfaces
and

Aε
I = εAI

2That is, AK =KA = AJ = JA =KJ =JK = 0, AA = A, KK = K, and JJ =J .
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is the radius of the I th inclusion, where 0 < AI < 1. In relation (5), Â, K̂, Ĵ are the
orthonormal3 eigentensors

Âijkl = δik Îj l − 1

2

(
Îik Îj l + Îil Îjk

)
,

K̂ijkl = 1

2

(
Îik Îj l + Îil Îjk − Îij Îkl

)
,

Ĵijkl = 1

2
Îij Îkl ,

μ̂ ε ≥ 0 and �̂ε ≥ 0 are the interface Lamé constants, and, again, γ̂ ε ≥ 0 denotes the surface
tension on the interfaces in the initial configuration.

Remark 1 All inclusions are assumed to be made of the same liquid, thus the unique value
of Lamé constant �(i) in (4); note that the case of an incompressible liquid is recovered by
setting �(i) = +∞. However, because each inclusion is allowed to have its own initial size,
the residual hydrostatic stresses rε

I in (4) may be different for different inclusions.

Remark 2 The specific form of the residual hydrostatic stresses (9) is necessarily a direct
consequence of equilibrium within the bulk of the liquid making up the inclusions and on the
interfaces separating the inclusions from the elastomer in the initial configuration. Indeed,
the residual hydrostatic stresses (9) are the solutions of the equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇
[

N∑

I=1

θj (ε
−1X)rε

I

]

= 0, X ∈ � \ �

N∑

I=1

θI (ε
−1X)rε

I = −γ̂ ε tr ∇̂N̂, X ∈ �

. (10)

Remark that the first of these equations is nothing more than balance of linear momentum
within the inclusions, while the second one is the Young-Laplace equation.

Scaling of the Interface Lamé Constants μ̂ε , ̂�ε and Initial Surface Tension γ̂ ε The govern-
ing equations (1), with (4), (5), and (9), apply to elastomers filled with a periodic distribution
of spherical liquid inclusions of arbitrary length scale ε. In this work, we are interested in
the limit as ε ↘ 0 when the inclusions are much smaller that the length scale of �, which is
considered to be a fixed domain. To this end, remark that equations (1) depend directly on
the size of the inclusions through the residual hydrostatic stresses (9) in (1)1,2 and through
the interface divergence D̂iv operator in (1)2. Accordingly, in order to preserve the correct
physics in the limit as ε ↘ 0, the interface Lamé constants μ̂ε , �̂ε and initial surface tension
γ̂ ε must scale appropriately with ε, in particular, they must scale linearly in ε. We write

μ̂ε = ε μ̂, �̂ε = ε �̂, γ̂ ε = ε γ̂ , (11)

where μ̂ ≥ 0, �̂ ≥ 0, and γ̂ ≥ 0.

3In complete analogy with their bulk counterparts (6)-(8), ÂK̂ = K̂Â = ÂĴ = Ĵ Â = K̂Ĵ = Ĵ K̂ = 0,
ÂÂ = Â, K̂K̂ = K̂, and Ĵ Ĵ = Ĵ .
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Granted the scaling (11), the modulus of elasticity (4) for the bulk depends on ε only
through the combination ε−1X, specifically,

Lε(X) = (
1 − θ(ε−1X)

)
L(m)+

N∑

I=1

θI (ε
−1X)

[

n�(i)J − (n − 1)γ̂

AI

(A−K+ (n − 1)J )

]

=: L(ε−1X), (12)

while the modulus of elasticity (5) for the interfaces specializes to

L̂ε = ε
(
2 μ̂ K̂+ 2(μ̂ + �̂)Ĵ + γ̂

(
Â− K̂+ Ĵ

)) =: ε L̂. (13)

It follows that the boundary-value problem (1) specializes to
⎧
⎪⎪⎨

⎪⎪⎩

Div
[
L(ε−1X)∇uε

] = 0, X ∈ � \ �

D̂iv
[
ε L̂∇̂uε

] − �L(ε−1X)∇uε�N̂ = 0, X ∈ �

uε(X) = u(X), X ∈ ∂�

. (14)

For fixed ε, equations (14) generalize in two counts the classical linear elastostatics equa-
tions for heterogeneous materials. Specifically, these equations feature: (i) residual stresses
(in the inclusions) and (ii) a non-standard jump condition across material (matrix/inclu-
sions) interfaces due to the presence of interfacial forces. These two traits have profound
implications not only on the resulting mechanical response of the body, but also on the
mathematical analysis of the problem. Indeed, remark that the non-symmetric term

−θI (ε
−1X)

(n − 1)γ̂

AI

A

in (12) makes the bulk modulus of elasticity L(ε−1X) not positive definite. Similarly, for the
physically prominent case when γ̂ > μ̂, the negative term

−γ̂ K̂

in (13) makes the interface modulus of elasticity L̂ not positive definite. Accordingly, the
standard coercivity based on local positive definiteness cannot be invoked here to prove
existence of solution for (14) via the Lax-Milgram theorem. Nevertheless, the expectation4

is that one can identify an appropriate weaker notion of coercivity that allows to prove
existence. We shall address this issue in a separate contribution. From now onward, we
simply assume that solutions uε(X) ∈ H 1(�;Rn) exist for (14).

3 The Limit as ε ↘ 0 by the Method of Two-Scale Asymptotic
Expansions

In this section, we present the derivation of the homogenized equations that emerge from
the boundary-value problem (14) in the limit as ε ↘ 0 by means of the method of two-scale
asymptotic expansions [13, 14].

4In point of fact, explicit solutions can be readily worked out in terms of plane/spherical harmonics for some
special cases, see, e.g., [7, 11, 12].
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We begin by looking for solutions of the asymptotic form

uε
i (X) =u

(0)
i (X, ε−1X) + ε u

(1)
i (X, ε−1X) + ε2u

(2)
i (X, ε−1X) + · · ·

=
∞∑

s=0

εsu
(s)
i (X, ε−1X), (15)

where the functions u(s)(X, ε−1X) are Y -periodic in their second argument and, according
to the boundary condition (14)3, such that u(0)(X, ε−1X) = u(X) and u(s)(X, ε−1X) = 0 for
s 
= 0 on ∂�.

Next, we introduce the variables

x = X and y = ε−1X

and operators

Aε
ik = ε−2A(1)

ik + ε−1A(2)
ik + A(3)

ik with

A(1)
ik = ∂

∂yj

[

Lijkl (y)
∂

∂yl

]

,

A(2)
ik = ∂

∂yj

[

Lijkl (y)
∂

∂xl

]

+ ∂

∂xj

[

Lijkl (y)
∂

∂yl

]

,

A(3)
ik = ∂

∂xj

[

Lijkl (y)
∂

∂xl

]

,

and

Â ε
ik =ε−1Â(1)

ik + Â(2)
ik + ε Â(3)

ik with

Â(1)
ik = ∂

∂yq

[

L̂ijkl

∂

∂yp

Îpl

]

Îqj − �Lijkl(y)
∂

∂yl

�N̂j ,

Â(2)
ik = ∂

∂yq

[

L̂ijkl

∂

∂xp

Îpl

]

Îqj + ∂

∂xq

[

L̂ijkl

∂

∂yp

Îpl

]

Îqj − �Lijkl(y)
∂

∂xl

�N̂j ,

Â(3)
ik = ∂

∂xq

[

L̂ijkl

∂

∂xp

Îpl

]

Îqj ,

in terms of which equations (14)1,2 can be compactly rewritten as

{
Aε

iku
ε
k = 0

Â ε
iku

ε
k = 0

. (16)

Substituting the ansatz (15) in the PDEs (16) and expanding in powers of ε leads to a
hierarchy of equations for the functions u(s)(x,y). Only the first four of these, of O(ε−2),
O(ε−1), O(ε0), and O(ε), turn out to be needed for our purposes here. In terms of the
above-introduced operators, they read

A(1)
ik u

(0)
k = 0, (17)
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{
A(1)

ik u
(1)
k + A(2)

ik u
(0)
k = 0

Â(1)
ik u

(0)
k = 0

, (18)

{
A(1)

ik u
(2)
k + A(2)

ik u
(1)
k + A(3)

ik u
(0)
k = 0

Â(1)
ik u

(1)
k + Â(2)

ik u
(0)
k = 0

, (19)

{
A(1)

ik u
(3)
k + A(2)

ik u
(2)
k + A(3)

ik u
(1)
k = 0

Â(1)
ik u

(2)
k + Â(2)

ik u
(1)
k + Â(3)

ik u
(0)
k = 0

. (20)

The Equations of O(ε−2) in the Bulk and O(ε−1) on the Interfaces The PDEs (17) and
(18)2 can be combined to render the set of equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂

∂yj

[

Lijkl (y)
∂u

(0)
k

∂yl

(x,y)

]

= 0, y ∈ Y \ G

∂

∂yq

[

L̂ijkl

∂u
(0)
k

∂yp

(x,y)Îpl

]

Îqj − �Lijkl(y)
∂u

(0)
k

∂yl

(x,y)�N̂j = 0, y ∈ G

(21)

for the function u(0)
k (x,y) in the unit cell Y , where G has been introduced to denote the

interfaces separating the elastomer from the inclusions contained in Y . In (21), y plays the
role of the independent variable, whereas x is just a parameter. Accordingly, the solution of
(21) with respect to y is simply a function of x that does not depend on y. We write

u(0)(x,y) = u(x). (22)

The Equations of O(ε−1) in the Bulk and O(ε0) on the Interfaces Making direct use of
the result (22), the PDEs (18)1 and (19)2 can be combined to yield

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂yj

[

Lijkl (y)
∂u

(1)
k

∂yl

(x,y)

]

= − ∂

∂yj

[

Lijkl (y)
∂uk

∂xl

(x)

]

, y ∈ Y \ G

∂

∂yq

[

L̂ijkl

∂u
(1)
k

∂yp

(x,y)Îpl

]

Îqj − �Lijkl(y)
∂u

(1)
k

∂yl

(x,y)�N̂j =

− ∂

∂yq

[

L̂ijkl

∂uk

∂xp

(x)Îpl

]

Îqj + �Lijkl(y)
∂uk

∂xl

(x)�N̂j , y ∈ G

, (23)

which, for a given function u(x), can be thought of as equations for the function u(1)(x,y)

in the unit cell Y with x playing the role of a parameter.
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By introducing the Y -periodic function ωkmn(y) ∈ H 1(Y ;Rn3
) defined implicitly as the

solution of the unit-cell problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂yj

[

Lijkl (y)
∂ωkmn

∂yl

(y)

]

= −∂Lijmn

∂yj

(y) , y ∈ Y \ G

∂

∂yq

[

L̂ijkl

∂ωkmn

∂yp

(y)Îpl

]

Îqj − �Lijkl(y)
∂ωkmn

∂yl

(y)�N̂j =

− ∂

∂yq

[
L̂ijklδkmÎnl

]
Îqj + �Lijkl(y)δkmδln�N̂j , y ∈ G

´
Y

ωkmn(y)dy = 0

, (24)

the solution (with respect to y) of (23) can be written in the separable form

u
(1)
k (x,y) = ωkmn(y)

∂um

∂xn

(x) + v
(1)
k (x), (25)

where v(1)(x) is an arbitrary function of x.

The Equations of O(ε0) in the Bulk and O(ε) on the Interfaces In turn, making again
use of the result (22), the combination of PDEs (19)1 and (20)2 renders the set of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂yj

[

Lijkl (y)
∂u

(2)
k

∂yl

(x,y)

]

= − ∂

∂yj

[

Lijkl (y)
∂u

(1)
k

∂xl

(x,y)

]

−

∂

∂xj

[

Lijkl(y)

(
∂uk

∂xl

(x) + ∂u
(1)
k

∂yl

(x,y)

)]

, y ∈ Y \ G

∂

∂yq

[

L̂ijkl

∂u
(2)
k

∂yp

(x,y)Îpl

]

Îqj − �Lijkl(y)
∂u

(2)
k

∂yl

(x,y)�N̂j =

− ∂

∂yq

[

L̂ijkl

∂u
(1)
k

∂xp

(x,y)Îpl

]

Îqj + �Lijkl(y)
∂u

(1)
k

∂xl

(x,y)�N̂j−

∂

∂xq

[

L̂ijkl

(
∂uk

∂xp

(x) + ∂u
(1)
k

∂yp

(x,y)

)

Îpl

]

Îqj , y ∈ G

. (26)

For any function u(x) of choice, noting that u(1)(x,y) is given by (25) in terms of u(x),
equations (26) are nothing more than a unit-cell problem for the function u(2)(x,y), where
once more x plays the role of a parameter.

Analogously to the classical context of elastostatics without residual stresses and interfa-
cial forces ([14], Chap. 2), equation (26) can be manipulated to yield the governing equation
for the leading-order function (22) in the ansatz (15). Indeed, upon integrating equation
(26)1 over Y , equation (26)2 over G, summing the two results together, then using the bulk
divergence theorem

ˆ

Y

∂(·)
∂yj

dy =
ˆ

∂Y

(·)Nj dy +
ˆ

G

�·�N̂j dy (27)
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and the interface divergence theorem

ˆ

G

∂(·)
∂yq

Îqj dy =
ˆ

G

∂N̂m

∂yn

Îmn(·)N̂j dy, (28)

noting that L̂ijklN̂j = 0, and recognizing the identity L̂ijkl Îqj = L̂iqkl , it follows that

∂

∂xj

ˆ

Y

Lijkl(y)

(
∂uk

∂xl

(x) + ∂u
(1)
k

∂yl

(x,y)

)

dy+

∂

∂xj

ˆ

G

L̂ijkl

(
∂uk

∂xp

(x) + ∂u
(1)
k

∂yp

(x,y)

)

Îpldy = 0.

Finally, making use of the representation (25) for u(1)(x,y) in terms of the Y -periodic func-
tion ωkmn(y), it is a simple matter to deduce that this last relation can be rewritten in the
form

∂

∂xj

[

Lijkl

∂uk

∂xl

(x)

]

= 0, (29)

where

Lijkl =
ˆ

Y

Lijmn(y)

(

δmkδnl + ∂ωmkl

∂yn

(y)

)

dy+
ˆ

G

L̂ijmn

(

δmkÎnl + ∂ωmkl

∂yp

(y)Îpn

)

dy. (30)

Equation (29) is the homogenized equation in � that, together with the boundary con-
dition u(x) = u(x) on ∂�, completely determines the macroscopic displacement field u(x).
The following remarks are in order:

i. Physical Interpretation of the Homogenized equation (29) Equation (29), together with the
boundary condition u(x) on ∂�, corresponds to the governing equation for the displacement
field within a homogeneous linear elastic solid, with constant effective modulus of elasticity
L, undergoing small quasistatic deformations.

ii. Absence of a Macroscopic Residual Stress In spite of the fact that there is a local stress
within the inclusions and an initial surface tension on the elastomer/inclusions interfaces,
the homogenized equation (29) is free of residual stresses. The reason behind this result is
that the average of the local residual stress and initial surface tension cancel each other out.
Precisely,

−
ˆ

Y

N∑

I=1

θI (y)
(n − 1)γ̂

AI

I dy +
ˆ

G

γ̂ Î dy = 0. (31)

iii. The Effective Modulus of Elasticity L The effective modulus of elasticity (30) that
emerges in the homogenized equation (29) is independent of the choice of the domain �

occupied by the filled elastomer and the boundary conditions on ∂�. It does depend, how-
ever, on the size of the inclusions, the residual hydrostatic stress that they are subjected to in
the initial configuration, as well as on the elasticity of the interfaces and the surface tension
that they are subjected to in the initial configuration.



Homogenization of Elastomers Filled with Liquid Inclusions. . . 245

iv. Symmetries of L The effective modulus of elasticity (30) satisfies the major and minor
symmetries

Lijkl = Lklij and Lijkl = Ljikl = Lijlk (32)

of a conventional homogeneous elastic solid, this in spite of the fact that the local moduli of
elasticity L(y) and L̂ for the bulk and the interfaces do not possess minor symmetries.

The major symmetry Lijkl = Lklij is a direct consequence of the fact that the local moduli
L(y) and L̂ themselves possess major symmetry. To see this, making use of the bulk (27)
and interface (28) divergence theorems, as well as of the definition (24) for the Y -periodic
corrector function ω(y), first note that

ˆ

Y

∂ωmij

∂yn

(y)Lmnpq(y)

(

δpkδql + ∂ωpkl

∂yq

(y)

)

dy +
ˆ

G

∂ωmij

∂yr

(y)ÎrnL̂mnpq×
(

δpkÎql + ∂ωpkl

∂ys

(y)Îsq

)

dy =
ˆ

Y

∂

∂yn

[

ωmij (y)Lmnpq(y)

(

δpkδql + ∂ωpkl

∂yq

(y)

)]

dy−
ˆ

Y

ωmij (y)
∂

∂yn

[

Lmnpq(y)

(

δpkδql + ∂ωpkl

∂yq

(y)

)]

dy +
ˆ

G

∂

∂yr

[
ωmij (y)L̂mnpq×

(

δpkÎql + ∂ωpkl

∂ys

(y)Îsq

)]

Îrndy −
ˆ

G

ωmij (y)
∂

∂yr

[

L̂mnpq

(

δpkÎql + ∂ωpkl

∂ys

(y)Îsq

)]

×

Îrndy =
ˆ

G

�ωmij (y)Lmnpq(y)

(

δpkδql + ∂ωpkl

∂yq

(y)

)

�N̂ndy−
ˆ

G

ωmij (y)�Lmnpq(y)

(

δpkδql + ∂ωpkl

∂yq

(y)

)

�N̂ndy = 0.

With this result at hand, it is a simple matter to verify that the formula (30) can be rewritten
in the equivalent form

Lijkl =
ˆ

Y

(

δmiδnj + ∂ωmij

∂yn

(y)

)

Lmnpq(y)

(

δpkδql + ∂ωpkl

∂yq

(y)

)

dy+
ˆ

G

(

δmi Înj + ∂ωmij

∂yr

(y)Îrn

)

L̂mnpq

(

δpkÎql + ∂ωpkl

∂ys

(y)Îsq

)

dy,

from which it is trivial to establish that Lijkl = Lklij since Lmnpq(y) = Lpqmn(y) and L̂mnpq =
L̂pqmn.

On the other hand, the minor symmetries Lijkl = Ljikl and Lijkl = Lijlk are a direct
consequence of the absence of a macroscopic residual stress (31) and the macroscopic major
symmetry (32)1 of L. To see this, first note that

−
ˆ

Y

N∑

I=1

θI (y)
(n − 1)γ̂

AI

(

δilδjk + ∂ωjkl

∂yi

(y)

)

dy +
ˆ

G

γ̂

(

δjkÎil + ∂ωjkl

∂yp

(y)Îip

)

dy =

−
ˆ

Y

N∑

I=1

θI (y)
(n − 1)γ̂

AI

∂ωjkl

∂yi

(y)dy +
ˆ

G

γ̂
∂ωjkl

∂yp

(y)Îip dy = −
ˆ

Y

∂

∂yi

[
N∑

I=1

θI (y)×

(n − 1)γ̂

AI

ωjkl(y)

]

dy +
ˆ

Y

∂

∂yi

[
N∑

I=1

θI (y)
(n − 1)γ̂

AI

]

ωjkl(y)dy +
ˆ

G

γ̂
∂N̂m

∂yn

ÎmnN̂i×
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ωjkl(y)dy =
N∑

I=1

(

−
ˆ

GI

(n − 1)γ̂

AI

ωjkl(y)N̂idy +
ˆ

GI

(n − 1)γ̂

AI

ωjkl(y)N̂idy
)

= 0,

where GI denotes the interface of the I th inclusion and where use has been made of relation
(31), the bulk (27) and interface (28) divergence theorems, as well as of the Y -periodicity of
the corrector function ω(y). In view of this last result, it is straightforward to show that the
formula (30) can also be rewritten as

Lijkl =
ˆ

Y

(

Lijmn(y) −
N∑

I=1

θI (y)
(n − 1)γ̂

AI

δinδjm

)(

δmkδnl + ∂ωmkl

∂yn

(y)

)

dy+
ˆ

G

(
L̂ijmn + γ̂ δjmÎin

)
(

δmkÎnl + ∂ωmkl

∂yp

(y)Îpn

)

dy,

from which it is trivial to establish that Lijkl = Ljikl since the combinations Lijmn(y) −
(
∑N

I=1 θI (y)(n − 1)γ̂ /AI )δinδjm and L̂ijmn + γ̂ δjmÎin possess minor symmetries. Minor
symmetries in the last two indices Lijkl = Lijlk can be established by exploiting the major
symmetry Lijkl = Lklij and then following the same steps as above.

v. Positive Definiteness of L Physically, the expectation is that the effective modulus of elas-
ticity (30) be positive definite. However, given that the local moduli of elasticity L(y) and
L̂ for the bulk and the interfaces are not positive definite in general, the standard argument
([14], Sect. 2.3 of Chap. 1) to prove so does not apply here. This difficulty is intimately re-
lated to the difficulty of proving existence of solution for the boundary-value problem (14)
noted at the end of the preceding section. We shall address both of these issues in a separate
contribution.

vi. Computation of L The computation of the effective modulus of elasticity (30) amounts
to solving the unit-cell problem (24) for the corrector ω(y). In general, this can only be
accomplished numerically. Ghosh and Lopez-Pamies [7] have recently put forth a finite-
element (FE) scheme to generate numerical solutions for such classes of boundary-value
problems. In the next section, by way of an example, we make use of that scheme to generate
solutions for the effective modulus of elasticity of isotropic suspensions of incompressible
liquid 2-spherical inclusions of monodisperse size embedded in an isotropic incompressible
elastomer.

vii. Strain and Stress Macro-Variables A quick glance at the homogenized equation (29) suf-
fices to identify

Hij (x) = ∂ui

∂xj

(x) (33)

as the macroscopic displacement gradient field and

Sij (x) = Lijkl

∂uk

∂xl

(x) (34)

as the macroscopic stress measure that describe the constitutive response of the resulting
effective elastic solid in the homogenization limit.



Homogenization of Elastomers Filled with Liquid Inclusions. . . 247

By virtue of the minor symmetries (32)2 of the effective modulus of elasticity L, remark
that the constitutive relation between (33) and (34) can be written in the classical stress-
strain form

Sij (x) = LijklEkl(x), Eij (x) := 1

2

(
Hij (x) + Hji(x)

)
. (35)

The macro-variable (33) happens to be identical to the one that arises in the classical con-
text of elastostatics without residual stresses and interfacial forces ([14], Chap. 2). Precisely,

Hij (x) =
ˆ

Y

(
∂ui

∂xj

(x) + ∂u
(1)
i

∂yj

(x,y)

)

dy

= ∂ui

∂xj

(x) +
ˆ

∂Y

u
(1)
i (x,y)Nj dy +

ˆ

G

�u
(1)
i (x,y)�N̂j dy

= ∂ui

∂xj

(x).

By contrast, the macro-variable (34) is not in accord with the classical result. Instead,
relation (34) corresponds to the average over the unit cell Y of the local stress in the bulk
plus the average over the interfaces G of the local interface stress. Precisely,

Sij (x) =
ˆ

Y

Lijkl(y)

(
∂uk

∂xl

(x) + ∂u
(1)
k

∂yl

(x,y)

)

dy+

ˆ

G

L̂ijkl

(
∂uk

∂xp

(x) + ∂u
(1)
k

∂yp

(x,y)

)

Îpldy

=Lijkl

∂uk

∂xl

(x).

A similar result emerges in the homogenization of elastic dielectric composites containing
space charges [15, 16].

viii. Effective Stored-Energy Function By virtue of the major symmetry (32)1 of the effective
modulus of elasticity L, the macroscopic constitutive relation (35) is a hyperelastic one. That
is, there is an effective stored-energy function, W(E) say, whose derivative with respect to
the macroscopic strain E yields the macroscopic stress S.

Precisely, making use of the bulk (27) and interface (28) divergence theorems, together
with the representation (25) for u(1)(x,y) and the definition (24) for the Y -periodic corrector
function ω(y), it is not difficult to deduce that

Sij = ∂W

∂Eij

(E),

where

W(E) =1

2

ˆ

Y

(
∂ui

∂xj

(x) + ∂u
(1)
i

∂yj

(x,y)

)

Lijkl(y)

(
∂uk

∂xl

(x) + ∂u
(1)
k

∂yl

(x,y)

)

dy+
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1

2

ˆ

G

(
∂ui

∂xp

(x) + ∂u
(1)
i

∂yp

(x,y)

)

Îpj L̂ijkl

(
∂uk

∂xq

(x) + ∂u
(1)
k

∂yq

(x,y)

)

Îql dy

=1

2
EijLijklEkl .

4 The Homogenized Behavior of Isotropic Suspensions of
Monodisperse 2-Spherical Inclusions

In this final section, for demonstration purposes, we present numerical results for the effec-
tive modulus of elasticity L of a basic class of elastomers filled with liquid inclusions, that
of isotropic suspensions of 2-spherical inclusions of monodisperse size,

AI = A I = 1, . . . ,N

made of an incompressible liquid,

�(i) = +∞,

embedded in an isotropic incompressible elastomer,

L(m) = 2μ(m)K+ ∞J ,

wherein the interfaces only feature a constant surface tension γ̂ and hence the interface
Lamé constants

μ̂ = �̂ = 0.

For this fundamental class of filled elastomers, remark that there is a sole dimensionless ma-
terial constant that describes the constitutive behavior, the so-called elasto-capillary number

eCa := γ̂

2μ(m)A
.

Physically, eCa is a measure of interface stiffness γ̂ /2A relative to bulk stiffness μ(m) [17,
18].

4.1 Construction of the Unit Cells Y

Prior to the presentation of the results for L per se in Sect. 4.2, we begin by outlining the
process by which we constructed the unit cells Y .

We follow in the footstep of a well-settled approach [19, 20] and approximate the afore-
mentioned class of isotropic filled elastomers as infinite media made of the periodic repe-
tition of unit cells Y that contain random distributions of a sufficiently large number N of
inclusions. A critical point in this approach is to determine what that sufficiently large num-
ber N is so that the resulting homogenized constitutive behaviors are indeed isotropic to a
high enough degree of accuracy.

In order to cover a large range of inclusion concentrations (that is, in the present context
of n = 2 space dimensions, area fractions of inclusions)

c :=
ˆ

Y

θ(y)dy,
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we make use of the algorithm introduced by Lubachevsky and Stillinger [21]. Roughly
speaking, the idea behind this algorithm is to randomly seed at once in the unit cell Y

the desired total number N of inclusions as points endowed with random velocities and a
uniform radial growth rate. As the points move and grow into 2-spheres, their collision with
one another are described by conservation of momentum, while their crossings through the
boundaries of the unit cell are described by periodicity. When the desired concentration c is
reached, the algorithm is stopped.

Although the algorithm allows to generate microstructures spanning the full range of
concentrations — from the dilute limit c ↘ 0 to the percolation threshold c ↗ cp ≈ 0.90
[21] — we do not wish to deal with the computational challenges of extremely packed
microstructures and restrict our attention here to the range c ∈ [0,0.50]; the full range of
concentrations will be considered in a companion work [22]. Specifically, the construction
process that we carried out is as follows.

In the footstep of [23, 24], we started by generating a total of 10,800 realizations of
unit cells Y = (0,1)2 containing 30, 60, 120, 240, 480, 960 randomly distributed inclusions
with six different concentrations c = 0.05,0.10,0.20,0.30,0.40,0.50 and three different
minimum inter-inclusion distances d = 0.01A,0.02A,0.05A. For each realization, we com-
puted the two-point correlation function P2(y) = ´

Y
θ(y′)θ(y + y′)dy′. As a first assessment

of deviation from exact geometric isotropy (which is only achieved in the limit of infinitely
many inclusions), we then computed the deviation of P2(y) from its isotropic projection
I2(|y|) = 1/(2π)

´ 2π

0 P2(|y| cosφe1 +|y| sinφe2)dφ onto the space of functions that depend
on y only through its magnitude |y|; recall that {e1, e2} stand for the principal axes of the
unit cell Y . Realizations that did not satisfy the condition

||P2(y) − I2(|y|)||1
||I2(|y|)||1 ≤ 10−2 (36)

were discarded as not sufficiently isotropic. This filtering process reduced the initial set of
10,800 realizations to just a set of 90 potentially acceptable realizations, five for each of
the six concentrations c = 0.05,0.10,0.20,0.30,0.40,0.50 and the three minimum inter-
inclusion distances d = 0.01A,0.02A,0.05A.

Thanks to its pure geometric nature, the criterion (36) provides a computationally inex-
pensive tool to weed out microstructures that are unlikely to lead to isotropic constitutive
behaviors. However, microstructures that do satisfy (36) need not exhibit isotropic consti-
tutive behaviors. To conclusively establish whether a given realization with a finite number
N of inclusions does indeed exhibit isotropic constitutive behavior to within the desired ac-
curacy, one needs to compute its effective modulus of elasticity L in its entirety and then
quantify its deviation from exact constitutive isotropy. Accordingly, for each of the 90 poten-
tially acceptable realizations and each of the three elasto-capillary numbers eCa = 0.20,1,5
that we considered in this study, we generated numerical solutions for the entire L via the
(n = 2 version of the) FE scheme put forth in [7] and then computed its isotropic deviatoric
projection

Liso = 2μK, μ := 1

4
K · L = 1

4
KijklLijkl, (37)

which serves to define the effective shear modulus μ of the filled elastomer at hand. Real-
izations that did not satisfy the stringent threshold

||KLK− Liso||∞
||KLK||∞

≤ 0.02 (38)
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Fig. 2 Representative unit cells Y containing random distributions of Liso = 960 2-spherical inclusions of
monodisperse radius A at concentration c = 0.50 and minimum distances d = 0.01A,0.02A, and 0.05A

between the inclusions

were discarded as not sufficiently isotropic. Those that did satisfy (38) are the ones for
which we present results below. Importantly, the maximum difference between any two such
realizations with the same inclusion concentration c and the same minimum inter-inclusion
distance d was less than 2%, and hence, as expected [25], they exhibited practically the
same homogenized behavior. By way of an example, Fig. 2 shows three representative unit
cells Y containing a total of Liso = 960 inclusions at concentration c = 0.50 and minimum
inter-inclusion distances d = 0.01A,0.02A, and 0.05A that satisfy conditions (36) and (38).

4.2 Results

Figure 3 presents the FE solutions obtained for the effective shear modulus μ, as defined
in (37), of the isotropic suspensions described above. While Fig. 3(a) shows the effective

Fig. 3 The effective shear modulus μ, normalized by the shear modulus of the underlying elastomeric matrix
μ(m) , for isotropic suspensions of monodisperse 2-spherical liquid inclusions spanning a range of concentra-
tions c of inclusions and minimum inter-inclusion distances d . (a) μ/μ(m) as a function of c for d = 0.01A

and three values of the elasto-capillary number eCa. (b) μ/μ(m) as a function of c for d = 0.01A,0.05A and
elasto-capillary number eCa = 5. For direct comparison, the plots include the asymptotic result (39) for the
corresponding dilute suspension
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shear modulus μ, normalized by the shear modulus of the elastomeric matrix μ(m), for min-
imum inter-inclusion distance d = 0.01A and elasto-capillary numbers eCa = 0.20,1,5 as
a function of the concentration c of inclusions, Fig. 3(b) shows μ/μm as a function of c for
d = 0.01A,0.05A and elasto-capillary number eCa = 5. For completeness, all plots include
the asymptotic result

μ = μdil + O(c2), μdil =μ(m) + (2 + n)(eCa − 1)

n + (2 + n) eCa
μ(m) c

=μ(m) + 2(eCa − 1)

1 + 2 eCa
μ(m) c (39)

for the effective shear modulus of a dilute suspension; see, e.g., Appendix D in [7] for a
derivation of this result in space dimension n = 3. To be precise, the result (39) corresponds
to the response of an infinitely large elastomer domain that contains a single liquid inclusion.
In other words, the result (39) is an extension of the classical result of Eshelby [26] to
account for the presence of surface tension at the matrix/inclusion interface.

Three observations are immediate from Fig. 3. First, irrespectively of the concentration
c of inclusions, μ < μ(m) for eCa = 0.20 < 1, μ = μ(m) for eCa = 1, and μ > μ(m) for
eCa = 5 > 1. That is, while the presence of liquid inclusions leads to the softening of the
material when eCa < 1, it leads to stiffening when eCa > 1. The transition from softening
to stiffening occurs precisely at eCa = 1, when, rather interestingly, the presence of liq-
uid inclusions goes unnoticed in the homogenized response. This behavior can be readily
understood by recognizing that liquid inclusions with “small” interface stiffness γ̂ /2A pose
little resistance to deformation and hence lead to the softening of the homogenized response.
By contrast, inclusions with “large” interface stiffness γ̂ /2A pose significant resistance to
deformation, behave effectively as stiff inclusions, and hence lead to the stiffening of the
homogenized response. Second, both the softening and the stiffening can be very signifi-
cant even at moderate values of c and eCa. At c = 0.5, for instance, we see from Fig. 3(a)
that μ = 0.54μ(m) for eCa = 0.20 and μ = 1.56μ(m) for eCa = 5. Finally, the minimum
inter-inclusion distance d remains inconsequential from the dilute limit c ↘ 0 up to approx-
imately c ≈ 0.40. For larger concentrations of inclusions, as expected on physical grounds
[24], suspensions with different minimum inter-inclusion distances d can exhibit sizably
different responses, more so the larger the concentration.
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