
J. Mech. Phys. Solids 182 (2024) 105473

A
0

T
A
a

b

c

A

K
F
S
B
P

1

o
t
i
d
s
f
t
i

c
t

(

h
R

Contents lists available at ScienceDirect

Journal of the Mechanics and Physics of Solids

journal homepage: www.elsevier.com/locate/jmps

he strength of the Brazilian fracture test
ditya Kumar a, Yangyuanchen Liu b, John E. Dolbow b, Oscar Lopez-Pamies c,∗

School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Department of Mechanical Engineering, Duke University, Durham, NC 27708, USA
Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, IL 61801, USA

R T I C L E I N F O

eywords:
racture nucleation
trength
rittle materials
hase-field regularization

A B S T R A C T

Since its introduction in the 1940s until present times, the so-called Brazilian test has been
embraced by practitioners worldwide as a method of choice to indirectly measure the tensile
strength of concrete, rocks, and other materials with a large compressive strength relative to
their tensile strength. This is because of the ease that the test affords in both the preparation
of the specimen (a circular disk) and the application of the loads (two platens compressing the
specimen between them). Yet, this practical advantage has to be tempered by the fact that the
observations from a Brazilian test — being an indirect experiment in the sense that it involves
not uniform uniaxial tension but non-uniform triaxial stress states throughout the specimen —
have to be appropriately interpreted to be useful. The main objective of this paper is to carry
out a complete quantitative analysis of where and when fracture nucleates and propagates
in a Brazilian test and thereby establish how to appropriately interpret its results. We do so
by deploying the phase-field fracture theory of Kumar et al. (2020), which has been recently
established as a complete theory of fracture capable of accurately describing the nucleation
and propagation of cracks in linear elastic brittle materials under arbitrary quasistatic loading
conditions. The last section of this paper puts forth a new protocol to deduce the tensile strength
of a material from a Brazilian test that improves on the current ISRM and ASTM standards.

. Introduction

Motivated by a grand engineering project concerning the relocation of a church in Rio de Janeiro by use of a platform standing
n concrete rollers (see, e.g., Fairbairn and Ulm, 2002), Lobo Carneiro (1943) introduced the so-called Brazilian test — also referred
o as the diametral compression test — as a convenient indirect experiment to infer the tensile strength of concrete. The test consists
n compressing between two stiff platens a disk of the material of interest until the disk fractures; see Fig. 1. In contrast to standard
irect tests aimed at subjecting specimens to uniform uniaxial tension, the Brazilian test is particularly accessible both in terms of
pecimen preparation and application of the loading. This practical advantage has to be tempered by the fact that the observations
rom a Brazilian test — being an indirect experiment in the sense that it involves not uniform uniaxial tension but non-uniform
riaxial stress states throughout the specimen — have to be appropriately interpreted to be useful. The main objective of this work
s precisely to establish how to appropriately interpret the results from a Brazilian test.

Soon after its introduction, it was recognized that the Brazilian test could be utilized to probe the tensile strength not just of
oncrete but, more generally, of nominally linear elastic brittle materials with a compressive strength significantly larger than their
ensile strength, such as rocks and ceramics. This resulted in a flurry of theoretical and experimental investigations of the Brazilian
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Fig. 1. Schematics of the Brazilian test for a specimen of radius 𝑅 and thickness 𝐻 under two standard types of loading configurations: (a) flat loading platens
and (b) curved loading platens with radius of curvature 𝑅𝚙.

test for a wide range of materials, insomuch that the International Society for Rock Mechanics (ISRM) proposed a specific type of
Brazilian test — one where curved platens of radius of curvature 𝑅𝚙 = 1.5𝑅, as opposed to flat (𝑅𝚙 = +∞) platens, are used to apply
the load to the specimens — as a standardized test to measure the tensile strength of rock materials (ISRM, 1978). The ISRM also
suggested in their proposal the use of the formula

𝜎𝚝𝚜 =
𝑃𝑚𝑎𝑥
𝜋𝑅𝐻

(1)

to deduce the tensile strength 𝜎𝚝𝚜 from the test. In this expression, 𝑃𝑚𝑎𝑥 stands for the maximum applied load indicated by the
testing machine, while 𝑅 is the radius of the disk and 𝐻 is its thickness; see Fig. 1. As late as 2008, the American Society for
Testing and Materials (ASTM) also advocated for the use of the formula (1) to deduce the tensile strength of rock materials from
the Brazilian test, with the significant caveat that they considered (1) applicable to tests carried out with curved and flat platens
alike (ASTM, 2008). The latest version of the ASTM standard (ASTM, 2016), however, considers the formula (1) only applicable for
flat platens. When the test is carried out with curved (𝑅𝚙 = 1.5𝑅) platens, the latest version of the ASTM standard suggests the use
of the different formula

𝜎𝚝𝚜 =
0.636𝑃𝑚𝑎𝑥
𝜋𝑅𝐻

. (2)

This long and yet ongoing history of the standardization of the Brazilian test hints both at its widespread popularity among
practitioners and at the fact that the interpretation of its results to identify the tensile strength of materials remains unclear; for
complementary accounts of the rich history of the Brazilian test, the interested reader is referred to the reviews by Andreev (1991),
Erarslan and Williams (2012), Li and Wong (2013), and Garcia et al. (2017).

In this context, as alluded to above, the objective of this paper is to bring resolution to the interpretation of the experimental
results from the Brazilian test by providing a complete quantitative description and explanation of where and when fracture nucleates
and propagates in the specimens. The focus is on the prominent case of materials that can be considered homogeneous, isotropic,
linear elastic brittle at the length scale of the specimens, this within the setting of quasistatic loading conditions. We do so by
deploying the phase-field fracture theory recently initiated by Kumar et al. (2018a), in particular, we make use of its specialization
to linear elastic brittle materials presented in Kumar et al. (2020).

In a nutshell, the theory initiated by Kumar et al. (2018a) corresponds to a generalization of the classical phase-field
regularization (Bourdin et al., 2000) of the variational theory of brittle fracture of Francfort and Marigo (1998), which in turn
corresponds to the mathematical statement of Griffith’s fracture postulate in its general form of energy cost–benefit analysis (Griffith,
1921). Consistent with the vast experimental evidence that has been amassed for over a century on numerous ceramics, metals, and
polymers alike, the generalization consists in accounting for the strength of the material at large, while keeping undisturbed the
ability of the standard classical phase-field regularization to model crack propagation according to Griffith’s fracture postulate.
A string of recent works (Kumar et al., 2018b; Kumar and Lopez-Pamies, 2020; Kumar et al., 2020; Kumar and Lopez-Pamies,
2021; Kumar et al., 2022) have presented a wide range of validation results for a broad spectra of materials (silicone, titania,
graphite, polyurethane, PMMA, alumina, natural rubber, glass), specimen geometries (with large and small pre-existing cracks, V
notches, U notches, and smooth boundaries), and loading conditions furnishing encouraging evidence that the phase-field fracture
theory initiated by Kumar et al. (2018a) may indeed provide a complete framework for the description of fracture nucleation and
propagation in nominally elastic brittle materials under arbitrary quasistatic loads.

Before presenting and deploying in Sections 3 and 4 the phase-field fracture theory to describe and explain the Brazilian test,
we begin in Section 2 by providing an elementary strength analysis of the problem. This analysis is aimed at clarifying a pervasive
2
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misconception in the literature on the Brazilian test. To wit, the strength of an elastic brittle material is not just a point in stress
space, but an entire surface1

 (𝝈) = 0, (3)

where 𝝈 stands for the Cauchy stress tensor. Much like the Young’s modulus 𝐸 and Poisson’s ratio 𝜈, the strength surface (3) is an
intrinsic (albeit stochastic) material property, one that is potentially very different for different materials. Now, it so happens that
no material point in a Brazilian-test specimen ever experiences a state of uniaxial tension with 𝝈 = diag(𝜎 > 0, 0, 0). As a result, the
nucleation of a crack in a Brazilian-test specimen necessarily involves the satisfaction of the strength criticality condition (3) at a
state of triaxial stress, or possibly at one of uniaxial compression, but not at one of uniaxial tension. In order to extrapolate that
oint in stress space to the tensile strength 𝜎𝚝𝚜 of the material — that is, the point defined by the equation  (diag(𝜎𝚝𝚜, 0, 0)) = 0 —
equires having knowledge of more data points on the strength surface (3). An immediate implication of this basic observation is
hat, in principle, the formulas (1) and (2) are not expected to yield correct values for the tensile strength of the material.

Beyond making plain the critical importance of the high dimensionality of the strength surface (3), the results presented in
ection 2 also serve to provide insight into the pivotal influence of the type of applied boundary conditions. The critical roles that
he strength surface of the material and the type of applied boundary conditions play in the nucleation of fracture in a Brazilian
est are investigated in full detail in Section 4, where we present representative results generated by the phase-field fracture theory
aid out in Section 3. Section 4 also includes results that show the effect of the critical energy release rate 𝐺𝑐 of the material on
ow cracks nucleate/propagate. We conclude this work by recording a summary of our findings and a number of final comments in
ection 5. They include an assessment of the performance of the ISRM and ASTM formulas (1) and (2) and the proposal of a new
rotocol to deduce the tensile strength 𝜎𝚝𝚜 of a material from a Brazilian test.

. An elementary strength analysis of the Brazilian test

.1. Initial configuration and kinematics

Consider a specimen in the form of a disk of radius 𝑅 = 25 mm and thickness 𝐻 = 10 mm in the 𝐞1-𝐞2 and 𝐞3 directions; see Fig. 1.
These specific values for 𝑅 and 𝐻 are chosen here because they are representative of a typical specimen2 and consistent with the
ASTM recommendation that 0.4 ≤ 𝐻∕𝑅 ≤ 1.5 for a Brazilian-test specimen (ASTM, 2016). The Cartesian basis {𝐞𝑖} stands for the
laboratory frame of reference. Its origin is placed at the center of the specimen, so that, in its initial (undeformed and stress-free)
configuration at time 𝑡 = 0 the specimen occupies the domain

𝛺 =
{

𝐗 ∶
√

𝑋2
1 +𝑋2

2 < 𝑅, |𝑋3| <
𝐻
2

}

.

aking use of standard notation, we denote the boundary of the specimen by 𝜕𝛺 and its outward unit normal by 𝐍. At a later time
𝑡 ∈ (0, 𝑇 ], in response to the applied boundary conditions described below in Section 2.3, the position vector 𝐗 of a material point
in the specimen will move to a new position specified by

𝐱 = 𝐗 + 𝐮(𝐗, 𝑡), (4)

where 𝐮(𝐗, 𝑡) is the displacement field. We write the associated strain at 𝐗 and 𝑡 as

𝐄(𝐮) ∶= 1
2
(

∇𝐮 + ∇𝐮𝑇
)

.

2.2. Constitutive behavior of the material: Elasticity, strength, and critical energy release rate

The specimen is taken to be made of a homogeneous, isotropic, linear elastic brittle material. Its mechanical behavior is hence
characterized by three intrinsic properties: (i) its elasticity, (ii) its strength, and (iii) its critical energy release rate.

Elasticity. Precisely, granted isotropy, the elastic behavior of the material is characterized by the stored-energy function

𝑊 (𝐄(𝐮)) = 𝜇𝐄 ⋅ 𝐄 + 𝜆
2
(tr 𝐄)2, (5)

where 𝜇 > 0 and 𝜆 > −2∕3𝜇 are the Lamé constants, or, by the same token, by the stress–strain relation

𝝈(𝐗, 𝑡) = 𝜕𝑊
𝜕𝐄

(𝐄(𝐮)) = 2𝜇𝐄 + 𝜆(tr 𝐄)𝐈.

1 When a macroscopic piece of an elastic brittle material is subjected to a state of monotonically increasing uniform but otherwise arbitrary stress 𝝈, fracture
ill nucleate from one or more of its inherent defects at a critical value of that applied stress. The set of all such critical stresses defines the strength surface

3); see Section 2.1 in Kumar et al. (2020) and Lopez-Pamies (2023).
2 In general, the thickness 𝐻 of the specimen should be chosen to be at least 10 times larger than the characteristic length scale of the underlying
3

icrostructure, e.g., the size of the grains in a polycrystal, so that the specimen can be considered to made of a homogeneous material.
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Fig. 2. (a) Comparison between the Drucker–Prager strength surface (6), with 𝜎𝚝𝚜 = 100 MPa and 𝜎𝚌𝚜 = 1232 MPa, and strength experimental data for titania (Ely,
1972); the results are plotted for the principal stress 𝜎2 in terms of the principal stress 𝜎1 and correspond to the case when 𝜎3 = 0. (b) Plot of the Drucker–Prager
strength surface (6), with 𝜎𝚝𝚜 = 100 MPa and 𝜎𝚌𝚜 = 1232 MPa, in the space of all three principal stresses (𝜎1 , 𝜎2 , 𝜎3).

For the purposes of this section, recalling the basic relations 𝜇 = 𝐸∕(2(1 + 𝜈)) and 𝜆 = 𝐸𝜈∕((1 + 𝜈)(1 − 2𝜈)), we will find it useful to
rewrite the stress–strain relation in the alternative form

𝝈(𝐗, 𝑡) = 𝐸
1 + 𝜈

𝐄 + 𝐸 𝜈
(1 + 𝜈)(1 − 2𝜈)

(tr 𝐄)𝐈

in terms of the Young’s modulus 𝐸 and Poisson’s ratio 𝜈.

Strength. For definiteness, the strength surface of the material is taken to be characterized by the Drucker–Prager strength surface

 (𝝈) =
√

𝐽2 + 𝛾1𝐼1 + 𝛾0 = 0 with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛾0 = −
2𝜎𝚌𝚜𝜎𝚝𝚜

√

3
(

𝜎𝚌𝚜 + 𝜎𝚝𝚜
)

𝛾1 =
𝜎𝚌𝚜 − 𝜎𝚝𝚜

√

3
(

𝜎𝚌𝚜 + 𝜎𝚝𝚜
)

, (6)

where

𝐼1 = tr 𝝈 and 𝐽2 =
1
2
tr 𝝈2

𝐷 with 𝝈𝐷 = 𝝈 − 1
3
(tr 𝝈)𝐈 (7)

stand for two of the standard invariants of the stress tensor 𝝈, while, again, the constants 𝜎𝚝𝚜 > 0 and 𝜎𝚌𝚜 > 0 denote the tensile
and compressive strengths of the material, that is, they denote the critical stress values at which fracture nucleates under uniaxial
tension 𝝈 = diag(𝜎 > 0, 0, 0) and uniaxial compression 𝝈 = diag(𝜎 < 0, 0, 0), respectively.

Remark 1. Note that, according to our choice of signs in (6), any stress state such that

 (𝝈) ≥ 0

is in violation of the strength of the material.

Remark 2. The two-material-parameter strength surface (6), originally introduced by Drucker and Prager (1952) to model the
yielding of soils, is arguably the simplest model that has proven capable of describing reasonably well the strength of many nominally
brittle materials, thus its use here as a representative template. By way of an example, Fig. 2(a) shows the comparison between the
strength surface (6), with 𝜎𝚝𝚜 = 100 MPa and 𝜎𝚌𝚜 = 1232 MPa, and the experimental data of Ely (1972) for titania. The results
correspond roughly to the case when 𝜎3 = 0 and are plotted in the space of principal stresses (𝜎1, 𝜎2). For completeness, Fig. 2(b)
shows the strength surface (6), with 𝜎𝚝𝚜 = 100 MPa and 𝜎𝚌𝚜 = 1232 MPa, in the space of all three principal stresses (𝜎1, 𝜎2, 𝜎3).

Critical energy release rate. Finally, the critical energy release rate (or intrinsic fracture energy) that describes the resistance to crack
growth in the material is given by the non-negative constant

𝐺𝑐 .

Recall that, physically, the value of 𝐺𝑐 denotes the total energy per unit fracture area expended in the creation of new surface
originating from an existing crack within the material.
4
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2.3. Boundary conditions: Evolving contact between the specimen and the platens

Consistent again with the ASTM recommendations, we consider that the specimen is placed between two curved platens whose
eparation (from pole to pole) is reduced from 𝐷 = 2𝑅 to 𝑑 < 2𝑅 at a constant rate. While the ASTM recommendation calls for
urved platens of radius of curvature 𝑅𝚙 = +∞ or 𝑅𝚙 = 1.5𝑅, we shall consider curved platens of arbitrary radius of curvature
𝚙 > 𝑅.

Accordingly, we have that the front and back boundaries

𝜕𝛺 =
{

𝐗 ∶
√

𝑋2
1 +𝑋2

2 < 𝑅, 𝑋3 =
𝐻
2

}

and 𝜕𝛺 =
{

𝐗 ∶
√

𝑋2
1 +𝑋2

2 < 𝑅, 𝑋3 = −𝐻
2

}

of the specimen are always traction free, and so is the part 𝜕𝛺 ⧵ 𝜕𝛺contact
 of the lateral boundary

𝜕𝛺 =
{

𝐗 ∶
√

𝑋2
1 +𝑋2

2 = 𝑅, |𝑋3| <
𝐻
2

}

that is not in contact with the platens.
The part 𝜕𝛺contact

 of the lateral boundary 𝜕𝛺 that is in contact with the platens evolves as the change in separation 𝛥𝑑 = 2𝑅−𝑑
between the platens increases. Assuming that the platens are rigid3 and that the friction at the specimen/platen interfaces is
negligible,4 we have in particular that (see, e.g., Chapter 2 in the classical monograph by Kikuchi and Oden, 1988)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑔(𝐮(𝐗, 𝑡);𝛥𝑑) ≤ 0

𝜎𝑁 (𝐗, 𝑡) ∶= 𝐍(𝐗) ⋅ 𝝈(𝐗, 𝑡)𝐍(𝐗) ≤ 0

𝝉(𝐗, 𝑡) ∶= 𝝈(𝐗, 𝑡)𝐍(𝐗) − 𝜎𝑁 (𝐗, 𝑡)𝐍(𝐗) = 𝟎
𝜎𝑁 (𝐗, 𝑡) 𝑔(𝐮(𝐗, 𝑡);𝛥𝑑) = 0

, (𝐗, 𝑡) ∈ 𝜕𝛺 × [0, 𝑇 ], (8)

where 𝑔(𝐮(𝐗, 𝑡);𝛥𝑑) is the so-called gap function. For the specific problem at hand here, as elaborated in Appendix A, it is given by
the fully explicit expression

𝑔(𝐮(𝐗, 𝑡);𝛥𝑑) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

√

𝑋2
1 + (𝑋2 − 𝑅 + 𝑅𝚙)2 − 𝑅𝚙 +

𝑋1𝑢1(𝐗, 𝑡) + (𝑢2(𝐗, 𝑡) +
𝛥𝑑
2 )(𝑋2 − 𝑅 + 𝑅𝚙)

√

𝑋2
1 + (𝑋2 − 𝑅 + 𝑅𝚙)2

, 𝑋2 > 0

√

𝑋2
1 + (𝑋2 + 𝑅 − 𝑅𝚙)2 − 𝑅𝚙 +

𝑋1𝑢1(𝐗, 𝑡) + (𝑢2(𝐗, 𝑡) −
𝛥𝑑
2 )(𝑋2 + 𝑅 − 𝑅𝚙)

√

𝑋2
1 + (𝑋2 + 𝑅 − 𝑅𝚙)2

, 𝑋2 < 0

(9)

n terms of the in-plane components 𝑢1(𝐗, 𝑡) and 𝑢2(𝐗, 𝑡) of the displacement field and the applied separation 𝛥𝑑 between the platens.

emark 3. In the limit as 𝑅𝚙 ↗ +∞, when the platens are flat, the gap function (9) simplifies to

𝑔(𝐮(𝐗, 𝑡);𝛥𝑑) =
⎧

⎪

⎨

⎪

⎩

𝑋2 − 𝑅 + 𝛥𝑑
2

+ 𝑢2(𝐗, 𝑡), 𝑋2 > 0

−𝑋2 − 𝑅 + 𝛥𝑑
2

− 𝑢2(𝐗, 𝑡), 𝑋2 < 0
.

Remark 4. By definition, the part of the lateral boundary 𝜕𝛺 that is in contact with the platens is simply given by

𝜕𝛺contact
 = {𝐗 ∶ 𝑔(𝐮(𝐗, 𝑡);𝛥𝑑) = 0} .

Remark 5. Physically, condition (8)1 is nothing more than a statement of the interpenetrability between the specimen and the
platens. Conditions (8)2,3 — which define the normal and tangential components of the traction 𝝈(𝐗, 𝑡)𝐍(𝐗) on 𝜕𝛺 — describe the
fact that the traction applied by the platens to the specimen must be normal to the specimen, consistent with the absence of friction,
and compressive. Finally, condition (8)4 determines that 𝜎𝑁 (𝐗, 𝑡) may only be nonzero when the gap function 𝑔(𝐮(𝐗, 𝑡);𝛥𝑑) = 0, that
is, when the platen is in contact with the specimen at 𝐗.

3 Typical platens are made of steel, which is significantly stiffer (𝐸𝚙 ≈ 200 GPa) than many materials for which the Brazilian test is used. When testing very
stiff materials (e.g., marble or alumina), however, the deformation of the platens must be taken into account. In this work, for clarity of presentation, we mostly
restrict attention to the case when the platens can be considered as rigid.

4 Friction is expected to be negligible in the Brazilian test, primarily because the contact region between the specimen and the platens is small, more so the
5

larger the radius of curvature 𝑅𝚙 of the platens.
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2.4. The governing equations of elastostatics

Prior to the nucleation of fracture, neglecting inertia and body forces, the combination of all the above ingredients with the
alance of linear momentum leads to the following set of governing equations of elastostatics

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

div
[

1
2(1 + 𝜈)

(

∇𝐮 + ∇𝐮𝑇
)

+ 𝜈
(1 + 𝜈)(1 − 2𝜈)

(div𝐮)𝐈
]

= 𝟎, (𝐗, 𝑡) ∈ 𝛺 × [0, 𝑇 ]
[

1
2(1 + 𝜈)

(

∇𝐮 + ∇𝐮𝑇
)

+ 𝜈
(1 + 𝜈)(1 − 2𝜈)

(div𝐮)𝐈
]

𝐍 = 𝟎, (𝐗, 𝑡) ∈ 𝜕𝛺 ∪ 𝜕𝛺 × [0, 𝑇 ]

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑔(𝐮;𝛥𝑑) ≤ 0
𝜎𝑁
𝐸

= 𝐍 ⋅
[

1
2(1 + 𝜈)

(

∇𝐮 + ∇𝐮𝑇
)

+ 𝜈
(1 + 𝜈)(1 − 2𝜈)

(div𝐮)𝐈
]

𝐍 ≤ 0

𝜎𝑁𝑔(𝐮;𝛥𝑑) = 0
[

1
2(1 + 𝜈)

(

∇𝐮 + ∇𝐮𝑇
)

+ 𝜈
(1 + 𝜈)(1 − 2𝜈)

(div𝐮)𝐈
]

𝐍 −
𝜎𝑁
𝐸

𝐍 = 𝟎

, (𝐗, 𝑡) ∈ 𝜕𝛺 × [0, 𝑇 ]

𝐮(𝐗, 0) = 𝟎, 𝐗 ∈ 𝛺

(10)

for the displacement field 𝐮(𝐗, 𝑡), where 𝑔(𝐮;𝛥𝑑) stands for the gap function (9) and where the Young’s modulus 𝐸 of the material
has been factored out for convenience.

2.4.1. The elastostatics equations regularized
In general, Eqs. (10) do not admit analytical solutions and hence must be solved numerically. One challenge in doing so is dealing

with the inequalities (10)3,4. Over the past few decades, several approaches have been developed to deal with this type of unilateral
constraints; see, e.g., Oden et al. (1980), Laursen (2003), and Wriggers (2006). The simplest among them is the penalty method.
The basic idea consists in regularizing the inequalities (10)3,4 and equality (10)5 by means of a single equality, containing a small
non-negative parameter (or penalty), say 𝜉, that reduces to the constraints (10)3–5 in the limit when that small parameter 𝜉 ↘ 0.
The resulting regularized elastostatics equations read

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

div
[

1
2(1 + 𝜈)

(

∇𝐮 + ∇𝐮𝑇
)

+ 𝜈
(1 + 𝜈)(1 − 2𝜈)

(div𝐮)𝐈
]

= 𝟎, (𝐗, 𝑡) ∈ 𝛺 × [0, 𝑇 ]
[

1
2(1 + 𝜈)

(

∇𝐮 + ∇𝐮𝑇
)

+ 𝜈
(1 + 𝜈)(1 − 2𝜈)

(div𝐮)𝐈
]

𝐍 = 𝟎, (𝐗, 𝑡) ∈ 𝜕𝛺 ∪ 𝜕𝛺 × [0, 𝑇 ]
[

1
2(1 + 𝜈)

(

∇𝐮 + ∇𝐮𝑇
)

+ 𝜈
(1 + 𝜈)(1 − 2𝜈)

(div𝐮)𝐈
]

𝐍 = − 1
𝜉 𝑅𝐸

⟨𝑔 (𝐮;𝛥𝑑)⟩𝐍, (𝐗, 𝑡) ∈ 𝜕𝛺 × [0, 𝑇 ]

𝐮(𝐗, 0) = 𝟎, 𝐗 ∈ 𝛺

, (11)

here the triangular brackets stand for the operator ⟨𝑓 ⟩ = (𝑓 + |𝑓 |)∕2 and, again, 𝑔(𝐮;𝛥𝑑) stands for the gap function (9). As the
egularization parameter 𝜉 ↘ 0, it can be shown that the solution of (11), say 𝐮𝜉 (𝐗, 𝑡), converges to the solution 𝐮(𝐗, 𝑡) of (10).

From a physical point of view, it is useful to remark that the quantity 𝜉−1 represents the stiffness of the platens. From a practical
oint of view, the advantage of dealing with the regularized Eqs. (11), instead of dealing with (10) directly, is that they are nothing
ore than a standard — albeit nonlinear because of the nonlinear term ⟨𝑔(𝐮;𝛥𝑑)⟩ — boundary-value problem in elastostatics and
ence are amenable to standard methods of solution. However, the approach suffers from ill-conditioning because of the smallness
f the penalty parameter 𝜉. A robust way to circumvent this numerical difficulty is to use an augmented Lagrangian technique;
ee, e.g., Section 3.3.3 in the monograph by Laursen (2003). All the results presented below are generated with the standard
inite-element (FE) method in conjunction with such a technique, the essential details of which are spelled out in Appendix B.

emark 6. From a practical point of view, it is worth remarking here that the FE solutions of (11) have shown that the region
f contact 𝜕𝛺contact

 and the component 𝑢2(𝐗, 𝑡) of the displacement field 𝐮(𝐗, 𝑡) at 𝐗 ∈ 𝜕𝛺contact
 are well approximated by the

asymptotic) Hertzian results

𝜕𝛺contact
 =

{

𝐗 ∶
√

𝑋2
1 +𝑋2

2 = 𝑅, |𝑋1| ≤

√

𝑅𝚙𝑅𝛥𝑑
4(𝑅𝚙 − 𝑅)

, |𝑋3| <
𝐻
2

}

and

𝑢2(𝐗, 𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝛥𝑑
2

+
(𝑅𝚙 − 𝑅)𝑋2

1
2𝑅𝚙𝑅

, 𝑋2 > 0

𝛥𝑑
2

−
(𝑅𝚙 − 𝑅)𝑋2

1
2𝑅𝚙𝑅

, 𝑋2 < 0

. (12)

ccordingly, for computational efficiency, one may make use of the asymptotic Hertzian boundary condition, wherein the
isplacement component (12) is directly prescribed, instead of the full contact boundary condition (10)3 in generating solutions
f (10).
6
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2.5. Where and when the strength surface is violated

Having formulated the elastostatics problem (11), we are now in a position to investigate the pointwise stress field in the specimen
uring its loading in a Brazilian test, this prior to the nucleation of fracture. Because of the lack of geometric and loading singularities
n the problem, remark that the resulting stress field is warranted to be bounded everywhere. This implies that the nucleation
f fracture is expected to be dominated by the strength of the material; see Remark 7 below. The verity of this expectation is
emonstrated below in Section 4.

In this section, in order to begin gaining quantitative insight into the first instance of fracture nucleation in a Brazilian test, we
resent results for where and when the strength surface of the material is violated in the specimen as the change in separation 𝛥𝑑

between the platens increases, that is, for where and when

 (𝝈) =
√

𝐽2 +
𝜎𝚌𝚜 − 𝜎𝚝𝚜

√

3
(

𝜎𝚌𝚜 + 𝜎𝚝𝚜
)

𝐼1 −
2𝜎𝚌𝚜𝜎𝚝𝚜

√

3
(

𝜎𝚌𝚜 + 𝜎𝚝𝚜
)

≥ 0. (13)

The results are based on FE solutions of (11) under the assumption of plane-stress conditions. Full three-dimensional simulations
have confirmed that the specimen is indeed essentially under conditions of plane stress; to be precise, the full three-dimensional
simulations show that the strength criterion (13) is always first reached on the front and back free boundaries before it is reached
at the midplane of the specimens.

Aimed at separately identifying the effects of the properties of the material and of the geometry of the platens, the results pertain
to three different compressive-to-tensile strength ratios, 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 5, 8, 20, three different Poisson’s ratios, 𝜈 = 0.1, 0.3, 0.45, and three
different radii of curvature of the platens, 𝑅𝚙 = +∞, 1.5𝑅, 1.1𝑅. This particular set of representative values is selected here because
it spans the entire range of possible scenarios.

Noting that the Young’s modulus 𝐸 does not enter the governing Eqs. (11) for the displacement field 𝐮(𝐗, 𝑡), all the results that
follow are presented in terms of stresses that are normalized by 𝐸. For definiteness, we also set 𝜎𝚝𝚜 = 10−3𝐸. That is, we make use
of the normalization 𝝈 ↦ 𝐸−1𝝈, 𝜎𝚝𝚜 ↦ 𝜎𝚝𝚜∕𝐸 = 10−3, and 𝜎𝚌𝚜 ↦ 𝜎𝚌𝚜∕𝐸. The results are presented in terms of an also normalized
global strain measure, namely, 𝛥𝑑∕(2𝑅) = 1 − 𝑑∕(2𝑅) ∈ (0, 1].

Remark 7. Before proceeding with the presentation of the results, it is important to emphasize that satisfaction of the strength
condition (13) at a material point 𝐗 is a necessary but not sufficient condition for fracture nucleation to occur at that point. This
is because the stress field in a Brazilian-test specimen is highly non-uniform and hence the nucleation of fracture in such a test
is governed neither solely by strength nor solely by the Griffith competition between the elastic and fracture energies, but by an
‘‘interpolation’’ between the two; see Section 2.3 in Kumar et al. (2020) and Lopez-Pamies (2023). Nevertheless, because the non-
uniformity of the stress field is not exceedingly large (in particular, the stress is not singular), the expectation is that the nucleation
of fracture is dominated by the strength of the material. The results in Section 4 will show that this is indeed the case.

2.5.1. The effect of the compressive-to-tensile strength ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜
Fig. 3 presents contour plots of the regions (shown in black) of the specimen at which the criterion (13) is satisfied, and hence

at which the strength of the material is exceeded, at four increasing values 𝛥𝑑∕(2𝑅) of the global strain between the platens, that is,
as the separation 𝑑 between the platens is decreased and the specimen is compressed. The results are shown over the undeformed
configuration and pertain to curved platens with radius of curvature 𝑅𝚙 = 1.5𝑅 and a material with Poisson’s ratio 𝜈 = 0.3 for three
different values of its compressive-to-tensile strength ratio, 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 5, 8, 20.

There are several telltale observations from these results. First, irrespective of the value of the compressive-to-tensile strength
ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜, the region where the strength of the material is initially violated is always around the symmetry axes of the applied
load. For the two smallest values 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 5 and 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 8, that region is equiaxed in shape and located near the platens, more
so for the smallest value 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 5. For the largest value 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 20, on the other hand, the region where the strength of the
material is initially violated is elongated in shape and is located around the center of the specimen.

Critically, for 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 5 and 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 8, when the strength is initially exceeded near the platens, the state of stress
is approximately of the uniaxial compression form (𝜎1, 𝜎2, 𝜎3) ≈ (0,−𝜎𝛽 , 0) with 𝜎𝛽 > 0. By contrast, for 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 20, when
the strength is initially exceeded around the center of the specimen, the state of stress is approximately of the triaxial form
(𝜎1, 𝜎2, 𝜎3) ≈ (𝜎𝛼 ,−3𝜎𝛼 , 0) with 𝜎𝛼 > 0; the precise maximum values of the ratio 𝜎1∕𝜎2 of principal stresses within the regions where
the strength is initially violated is directly indicated in the plots for each of the three cases. Thus, as anticipated in the Introduction,
the stress fields within all the regions that violate the strength of the material in the results shown in Fig. 3 are far from a state of
uniaxial tension (𝜎1, 𝜎2, 𝜎3) = (𝜎 > 0, 0, 0).

The above observations suggest that fracture nucleation, if it is dominated by the strength of the material as expected, is likely
o occur around the center of the specimen for materials with large compressive-to-tensile strength ratios 𝜎𝚌𝚜∕𝜎𝚝𝚜. In the case that
𝚌𝚜∕𝜎𝚝𝚜 is not sufficiently large, on the other hand, they suggest that fracture nucleation is likely to occur near the region of contact
ith the platens. This conclusion — which was already noticed in the early studies of the Brazilian test (Fairhurst, 1964; Colback,
966) — is consistent with experimental observations.
7
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Fig. 3. Contour plots, over the undeformed configuration, of the regions of the specimen where the stress field exceeds ( (𝝈) ≥ 0) the Drucker–Prager strength
surface of the material at four increasing values of the global strain 𝛥𝑑∕(2𝑅) between the platens. The results correspond to curved platens with radius of
curvature 𝑅𝚙 = 1.5𝑅 and a material with Poisson’s ratio 𝜈 = 0.3 and three different values of the compressive-to-tensile strength ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 5, 8, 20.

2.5.2. The effect of the Poisson’s ratio 𝜈
From the setup of the Brazilian test, and even more so from the governing Eqs. (11) themselves, it is clear that the Poisson’s ratio

𝜈 of the material may have an impact on the resulting stress field in the specimen. Not surprisingly, akin to the compressive-to-tensile
strength ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜, the Poisson’s ratio 𝜈 was already recognized as a material property of interest in the early studies (Hondros,
1959).

To gain quantitative insight into the effect of 𝜈 on the nucleation of fracture in the Brazilian test, Fig. 4 presents contour plots
of the regions of the specimen at which the strength criterion (13) is satisfied at four increasing values 𝛥𝑑∕(2𝑅) of the global strain
between the platens for a material with compressive-to-tensile strength ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 8 and three different values of the Poisson’s
ratio 𝜈 = 0.1, 0.3, 0.45; note that these values correspond to bulk-to-shear-moduli ratios 𝜅∕𝜇 ≈ 1, 2, 10, respectively. Much like in
Fig. 3, the results are shown over the undeformed configuration and pertain to curved platens with radius of curvature 𝑅𝚙 = 1.5𝑅.

A quick glance suffices to realize that the results in Fig. 4 are qualitatively very similar to those in Fig. 3. The difference generated
by different Poisson’s ratios 𝜈 is primarily quantitative in nature, but this quantitative difference is admittedly small. Consistent with
basic intuition, it is such that the larger the Poisson’s ratio 𝜈 of the material, the smaller the global strain 𝛥𝑑∕(2𝑅) that is needed to
violate its strength surface.

2.5.3. The effect of the radius of curvature 𝑅𝚙 of the platens
It is also apparent from the setup of the Brazilian test that the radius of curvature 𝑅𝚙 of the platens (or, more generally, the

specifics of how the forces are applied to the specimen through the contact with the platens) should have a significant impact on
the resulting stress field in the specimen, especially near the poles. Early analytical and experimental studies confirmed as much;
see, e.g., Colback (1966) and Awaji and Sato (1979).

To gain quantitative insight into the effect of 𝑅𝚙 on the nucleation of fracture in the Brazilian test, Fig. 5 presents contour plots
of the regions of the specimen at which the strength criterion (13) is satisfied at four increasing values 𝛥𝑑∕(2𝑅) of the global strain
between the platens for three different values of their radius of curvature 𝑅𝚙 = +∞, 1.5𝑅, 1.1𝑅; recall that 𝑅𝚙 = +∞ and 𝑅𝚙 = 1.5𝑅
are the two choices recommended by the ASTM standard. Much like in Figs. 3 and 4, the results are shown over the undeformed
8
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Fig. 4. Contour plots, over the undeformed configuration, of the regions of the specimen where the stress field exceeds ( (𝝈) ≥ 0) the Drucker–Prager strength
surface of the material at four increasing values of the global strain 𝛥𝑑∕(2𝑅) between the platens. The results correspond to curved platens with radius of
curvature 𝑅𝚙 = 1.5𝑅 and a material with compressive-to-tensile strength ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 8 and three different values of Poisson’s ratio 𝜈 = 0.1, 0.3, 0.45.

The main observation from the results presented in Fig. 5 is that the decrease of the radius of curvature 𝑅𝚙 of the platens has
a similar effect as the increase of the compressive-to-tensile strength ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜 of the material, namely, smaller values of 𝑅𝚙

lead to the violation of the strength surface of the material to concentrate around the center of the specimen rather than near the
platens.

In summary, the above elementary strength analysis suggests that the nucleation of fracture in a Brazilian test — if, again, it is
indeed dominated by the strength of the material as expected — can occur either around the center of the specimen or near the
region of contact with the platens. Specifically, nucleation of fracture around the center is more likely to occur in materials with
a larger compressive-to-tensile strength ratio and for platens with a smaller radius of curvature 𝑅𝚙. On the other hand, nucleation
near the region of contact with the platens is more likely to occur in materials with smaller compressive-to-tensile strength ratios
and for platens with larger radius of curvature 𝑅𝚙. What is more, the analysis has made it plain that, irrespective of its location,
nucleation of fracture will always occur in a region where the strength of the material is violated in a state of stress that is far from
uniaxial tension.

Now, as emphasized in Remark 7, the violation (13) of the strength surface of the material, which is the focus of the above
analysis, is a necessary but not sufficient condition for the nucleation of fracture. To determine where and when fracture actually
nucleates and propagates in a Brazilian test one needs to make use of a complete theory of fracture. We do just that in the sequel.

3. A complete fracture nucleation and propagation analysis of the Brazilian test

In addition to the deformation (4), the boundary conditions (11)2,3 applied in a Brazilian test eventually result in the nucleation
and subsequent propagation of cracks in the specimen. In the sequel, we describe such cracks in a regularized fashion via an order
parameter or phase field

𝑣 = 𝑣(𝐗, 𝑡)

taking values in the range [0, 1]. The value 𝑣 = 1 identifies the intact regions of the material and 𝑣 = 0 those that have been fractured,
while the transition from 𝑣 = 1 to 𝑣 = 0 is set to occur smoothly over regions of small thickness of regularization length scale 𝜀 > 0.
9
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Fig. 5. Contour plots, over the undeformed configuration, of the regions of the specimen where the stress field exceeds ( (𝝈) ≥ 0) the Drucker–Prager strength
surface of the material at four increasing values of the global strain 𝛥𝑑∕(2𝑅) between the platens. The results correspond to a material with Poisson’s ratio
𝜈 = 0.3, compressive-to-tensile strength ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 8, and platens of three different radii of curvature 𝑅𝚙 = +∞, 1.5𝑅, 1.1𝑅.

3.1. The governing equations of deformation and fracture

According to the specialization to the Brazilian test of interest in this work of the phase-field fracture theory put forth by Kumar
et al. (2020) for linear elastic brittle materials, the displacement field 𝐮𝑘(𝐗) = 𝐮(𝐗, 𝑡𝑘) and phase field 𝑣𝑘(𝐗) = 𝑣(𝐗, 𝑡𝑘) at any material
point 𝐗 ∈ 𝛺 = 𝛺∪𝜕𝛺 and at any given discrete time 𝑡𝑘 ∈ {0 = 𝑡0, 𝑡1,… , 𝑡𝑚, 𝑡𝑚+1,… , 𝑡𝑀 = 𝑇 } are determined by the system of coupled
partial differential equations (PDEs)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

div
[

𝑣2𝑘
𝜕𝑊
𝜕𝐄

(𝐄(𝐮𝑘))
]

= 𝟎, 𝐗 ∈ 𝛺
[

𝑣2𝑘
𝜕𝑊
𝜕𝐄

(𝐄(𝐮𝑘))
]

𝐍 = 𝟎, 𝐗 ∈ 𝜕𝛺 ∪ 𝜕𝛺

⎧
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⎨

⎪

⎪

⎪

⎩

𝑔(𝐮𝑘;𝛥𝑑) ≤ 0
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]
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𝐸

𝐍 = 𝟎

, 𝐗 ∈ 𝜕𝛺

(14)

and

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

div
[

𝜀𝐺𝑐∇𝑣𝑘
]

= 8
3
𝑣𝑘𝑊 (𝐄(𝐮𝑘)) −

4
3
𝑐𝚎(𝐗, 𝑡𝑘) −

𝐺𝑐
2𝜀

, if 𝑣𝑘(𝐗) < 𝑣𝑘−1(𝐗), 𝐗 ∈ 𝛺

div
[

𝜀𝐺𝑐∇𝑣𝑘
]

≥ 8
3
𝑣𝑘𝑊 (𝐄(𝐮𝑘)) −

4
3
𝑐𝚎(𝐗, 𝑡𝑘) −
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, if 𝑣𝑘(𝐗) = 1 or 𝑣𝑘(𝐗) = 𝑣𝑘−1(𝐗) > 0, 𝐗 ∈ 𝛺

𝑣𝑘(𝐗) = 0, if 𝑣𝑘−1(𝐗) = 0, 𝐗 ∈ 𝛺

(15)
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∇𝑣𝑘 ⋅ 𝐍 = 0, 𝐗 ∈ 𝜕𝛺
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with 𝐮(𝐗, 0) ≡ 𝟎 and 𝑣(𝐗, 0) ≡ 1. In these equations, we recall that the stored-energy function 𝑊 (𝐄) is given by (5), 𝑔(𝐮;𝛥𝑑) denotes
he gap function (9), ∇𝑣𝑘 = ∇𝑣(𝐗, 𝑡𝑘), and 𝑐𝚎(𝐗, 𝑡) is a driving force whose specific constitutive prescription depends on the particular
orm of strength surface (3) of the material.

As in the preceding section, we assume that the strength surface of the material is characterized by the Drucker–Prager strength
urface (6). For such a choice, making use of the constitutive prescription provided in Kumar et al. (2022), the driving force in (15)
eads

𝑐𝚎(𝐗, 𝑡) = 𝛽𝜀2
√

𝐽2 + 𝛽𝜀1𝐼1 + 𝛽𝜀0 +
1
𝑣3

⎛

⎜

⎜

⎜

⎝

1 −

√

𝐼21
𝐼1

⎞

⎟

⎟

⎟

⎠

(

𝐽2
2𝜇

+
𝐼21

6(3𝜆 + 2𝜇)

)

. (16)

In this expression,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛽𝜀0 = 𝛿𝜀
3𝐺𝑐
8𝜀

𝛽𝜀1 = −
(

(1 + 𝛿𝜀)(𝜎𝚌𝚜 − 𝜎𝚝𝚜)
2𝜎𝚌𝚜𝜎𝚝𝚜

)

3𝐺𝑐
8𝜀

+
𝜎𝚝𝚜

6(3𝜆 + 2𝜇)
+

𝜎𝚝𝚜
6𝜇

𝛽𝜀2 = −

(√

3(1 + 𝛿𝜀)(𝜎𝚌𝚜 + 𝜎𝚝𝚜)
2𝜎𝚌𝚜𝜎𝚝𝚜

)

3𝐺𝑐
8𝜀

+
𝜎𝚝𝚜

2
√

3(3𝜆 + 2𝜇)
+

𝜎𝚝𝚜
2
√

3𝜇

,

1 and 𝐽2 stand for the invariants (7) of the Cauchy stress

𝝈(𝐗, 𝑡) = 𝑣2 𝜕𝑊
𝜕𝐄

(𝐄(𝐮)) = 2𝜇𝑣2𝐄 + 𝜆𝑣2(tr 𝐄)𝐈

and, hence, read as

𝐼1 = (3𝜆 + 2𝜇)𝑣2tr 𝐄(𝐮) and 𝐽2 = 2𝜇2𝑣4tr 𝐄2
𝐷(𝐮), 𝐄𝐷(𝐮) = 𝐄(𝐮) − 1

3
(tr 𝐄(𝐮)) 𝐈,

n terms of the displacement field 𝐮 and phase field 𝑣, and 𝛿𝜀 is a unitless 𝜀-dependent coefficient whose calibration needs to be
arried out numerically.

Specifically, as elaborated in Subsection 4.3.2 in Kumar et al. (2020), for a given set of material constants 𝜆, 𝜇, 𝐺𝑐 , 𝜎𝚝𝚜, 𝜎𝚌𝚜, a
given finite regularization length 𝜀, and mesh size ℎ, the value of 𝛿𝜀 is determined by considering any boundary-value problem of
hoice for which the nucleation from a large pre-existing crack can be determined exactly — according to Griffith’s sharp theory of
rittle fracture for linear elastic materials — and then by having the phase-field theory (14)–(15) with external driving force (16)
atch that exact solution thereby determining 𝛿𝜀.

Remark 8. Physically, the calibration of the parameter 𝛿𝜀 is what allows the governing Eqs. (14)–(15) to spouse the concept
of strength in the bulk with the concept of Griffith energy competition at crack singularities. As illustrated in Appendix C, this
calibration is directly related to a family of material length scales that is intrinsic to the theory and that comes about because the
evolution Eq. (15) for the phase field depends on material inputs of different units. Precisely, the elastic stored-energy function
𝑊 (𝐄(𝐮)) and the strength surface  (𝝈) = 0 have units of 𝑓𝑜𝑟𝑐𝑒∕𝑙𝑒𝑛𝑔𝑡ℎ2, while the critical energy release rate 𝐺𝑐 has units of
𝑓𝑜𝑟𝑐𝑒∕𝑙𝑒𝑛𝑔𝑡ℎ. Their combination in Eq. (15) leads to the family of material length scales in the theory.

Remark 9. The inequalities in (15) stem from the facts that, by definition, the phase field is bounded according to 0 ≤ 𝑣 ≤ 1 and, by
constitutive assumption, fracture is an irreversible process, in other words, healing is not allowed. Incidentally, recent experimental
evidence has revealed that internally nucleated cracks in elastomers may self-heal (Poulain et al., 2017, 2018). The inequalities
(15) can be augmented to describe such a healing process; see Subsection 3.2 in Kumar et al. (2018a) for the relevant details and
Francfort et al. (2019) for the corresponding ‘‘sharp-theory’’ perspective.

Remark 10. The regularization length 𝜀 in (15) is a parameter that is void of any physical meaning. In practice, it should be selected
to be significantly smaller than the smallest characteristic length scale in the structural problem at hand, as well as no significantly
larger than the smallest material length scale built in (14)–(15); see Appendix C. Provided that 𝜀 is selected in this manner, the
predictions generated by the governing Eqs. (14)–(15) are essentially independent of 𝜀; see, e.g., Subsection 4.3 in Kumar et al.
(2020) and the Appendix in Kumar et al. (2022). In this work, it suffices to consider regularization lengths that are smaller than
the thickness of the specimen. All the results that are presented below correspond to 𝜀 ≤ 𝐻∕10 = 1 mm.

3.2. The governing equations regularized

In general, Eqs. (14)–(15) can only be solved numerically. To do so, in addition to dealing with the contact inequalities (14)3,4 for
the displacement field 𝐮 already discussed above, we also have to deal with the inequalities in (15), which, as noted in Remark 9,
enforce that the phase field remains in the physically admissible range 0 ≤ 𝑣 ≤ 1 and that fracture is irreversible. Following the
11
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Table 1
Values of the regularization length 𝜀, FE mesh size ℎ, and the parameter 𝛿𝜀 utilized in the simulations.
𝜎𝚌𝚜∕𝜎𝚝𝚜 𝐺𝑐 (N/m) 𝜀 (mm) Mesh size ℎ (mm) 𝛿𝜀

5 100 0.7 0.05 6
5 500 3.5 0.1 11
5 1000 0.5 0.05 2.65
8 1000 1.2 0.1 4
20 1000 5 0.2 23

same strategy as in Section 2.4.1, here too we opt to make use of the penalty method to regularize these inequalities. Precisely, we
consider the regularized set of governing equations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

div
[

𝑣2𝑘
𝜕𝑊
𝜕𝐄

(𝐄(𝐮𝑘))
]

= 𝟎, 𝐗 ∈ 𝛺
[

𝑣2𝑘
𝜕𝑊
𝜕𝐄

(𝐄(𝐮𝑘))
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𝐍 = 𝟎, 𝐗 ∈ 𝜕𝛺 ∪ 𝜕𝛺
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𝑣2𝑘
𝜕𝑊
𝜕𝐄

(𝐄(𝐮𝑘))
]

𝐍 = − 1
𝜉 𝑅𝜇

⟨

𝑔
(

𝐮𝑘;𝛥𝑑
)⟩

𝐍, 𝐗 ∈ 𝜕𝛺

(17)

and
⎧

⎪

⎨

⎪

⎩

div
[

𝜀𝐺𝑐∇𝑣𝑘
]

= 8
3
𝑣𝑘𝑊 (𝐄(𝐮𝑘)) −

4
3
𝑐𝚎(𝐗, 𝑡𝑘) −

𝐺𝑐
2𝜀

+ 8
3 𝜁

𝑝(𝑣𝑘−1, 𝑣𝑘), 𝐗 ∈ 𝛺

∇𝑣𝑘 ⋅ 𝐍 = 0, 𝐗 ∈ 𝜕𝛺
(18)

ith

𝑝(𝑣𝑘−1, 𝑣𝑘) = 
(

𝑣𝛼 − 𝑣𝑘
) (

|𝑣𝑘−1 − 𝑣𝑘| − (𝑣𝑘−1 − 𝑣𝑘)
)

+ |1 − 𝑣𝑘| − (1 − 𝑣𝑘) − |𝑣𝑘| + 𝑣𝑘, (19)

(𝐗, 0) ≡ 𝟎, and 𝑣(𝐗, 0) ≡ 1 for the displacement field 𝐮𝑘(𝐗) = 𝐮(𝐗, 𝑡𝑘) and the phase field 𝑣𝑘(𝐗) = 𝑣(𝐗, 𝑡𝑘) at any material point
𝐗 ∈ 𝛺 = 𝛺 ∪ 𝜕𝛺 and at any given discrete time 𝑡𝑘 ∈ {0 = 𝑡0, 𝑡1,… , 𝑡𝑚, 𝑡𝑚+1, ..., 𝑡𝑀 = 𝑇 }.

Much like in simpler equations of elastostatics (11), the triangular brackets in Eq. (17)3 stand for the operator ⟨𝑓 ⟩ = (𝑓 + |𝑓 |)∕2,
𝑔(𝐮;𝛥𝑑) denotes the gap function (9), and the regularization parameter 𝜉 should be selected to be small relative to the stiffness of the
material. To circumvent the ill-conditioning caused by the smallness of 𝜉, we make use of the same augmented Lagrangian treatment
spelled out in Appendix B to solve the elastostatics equations (11). For further computational efficiency, one may alternatively use
a Hertzian boundary condition; see Remark 6 above.

In the regularization (or penalty) function (19) entering Eq. (18)1,  (⋅) stands for the Heaviside function and 𝑣𝛼 = 0.05 denotes
the value below which the phase field 𝑣 is considered to be non-increasing in time; see Remark 4 in Kumar et al. (2020). Also, the
egularization parameter 𝜁 should be selected to be small relative to term 2𝜀∕𝐺𝑐 . All the results that are presented below correspond
o 𝜁−1 = 104𝐺𝑐∕(2𝜀).

On their own, the regularized Eqs. (17) and (18) are second-order PDEs for the displacement field 𝐮 and the phase field 𝑣.
ccordingly, their numerical solution is amenable to a standard FE staggered scheme in which (17) and (18) are discretized with

inite elements and solved iteratively one after the other at every time step 𝑡𝑘 until convergence is reached. All the simulations
resented below are generated with such a scheme, making use of unstructured meshes and plane-stress conditions, as implemented
n a modification of the FEniCS code of the theory of Kumar et al. (2020) available in GitHub5 that accounts for the boundary
ondition (17)3 of contact, as well as in a MOOSE implementation of the theory also available in GitHub.6

. Results and discussion

Having spelled out the governing Eqs. (17)–(18), we are now in a position to investigate where and when cracks nucleate and
ropagate in a Brazilian test.

Throughout this section, we consider specimens with the same radius 𝑅 = 25 mm and thickness 𝐻 = 10 mm considered in the
receding section. For definiteness, we take the specimens to be made of a material with Young’s modulus and Poisson’s ratio

𝐸 = 100GPa and 𝜈 = 0.20.

hese values are representative of various common types of glasses, ceramics, and rocks. We also consider that the strength surface
f the material is of the Drucker–Prager form (6) with uniaxial tensile and compressive strengths

𝜎𝚝𝚜 = 200, 125, 50MPa and 𝜎𝚌𝚜 = 1000MPa.

5 https://github.com/adityakr42/FEniCS_Fracture_Kumar_Lopez-Pamies
6 https://github.com/hugary1995/raccoon
12
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These correspond to the same ratios 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 5, 8, 20 considered in the preceding section and are also characteristic of various
lasses, ceramics, and rocks. Finally, we consider the values

𝐺𝑐 = 100, 500, 1000N∕m.

or the critical energy release rate of the material. Table 1 provides the values of the regularization length 𝜀, the FE mesh size ℎ,
and the corresponding values of the parameter 𝛿𝜀 for all the pairs 𝜎𝚌𝚜∕𝜎𝚝𝚜 and 𝐺𝑐 for which results are presented in the next three
subsections. The values of the mesh size ℎ in Table 1 were checked to be small enough to lead to spatially converged FE solutions.

.1. The effect of the compressive-to-tensile strength ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜

Fig. 6 presents results from simulations carried out on specimens with the three different compressive-to-tensile strength ratios
𝚌𝚜∕𝜎𝚝𝚜 = 5, 8, 20. The results correspond to curved platens with radius of curvature 𝑅𝚙 = 1.5𝑅 and specimens with critical energy
elease rate 𝐺𝑐 = 1000 N∕m. Part (a) of the figure plots the normalized force 𝑃∕(𝜋𝑅𝐻) exerted by the platens as a function of the
ormalized applied displacement 𝛥𝑑∕(2𝑅); note that the particular choice of normalization for the force is so that its value 𝑃∕(𝜋𝑅𝐻)
an be directly related to the ISRM and ASTM formulas (1) and (2). Part (b) of the figure presents the corresponding contour plots
f the phase field 𝑣 at three select values of the normalized force 𝑃∕(𝜋𝑅𝐻). Specifically, the first column shows results at around
he first instance when the phase field 𝑣 decreases from its initial value of 1, which happens to coincide with the instance when the
trength surface of the material  (𝝈) = 0 is first violated. The second and third columns show results just before and just after 𝑣
ocalizes near 0; recall that the localization of the phase field 𝑣 near 0 corresponds to the nucleation or propagation of a crack. To
id the discussion, the regions of the specimen where the strength surface  (𝝈) = 0 of the material is violated are delineated by a
hite line in the first two columns of the contour plots.

There are several key observations to be made from the results in Fig. 6. First, for all three compressive-to-tensile strength ratios
𝚌𝚜∕𝜎𝚝𝚜, Fig. 6(a) shows that the force 𝑃∕(𝜋𝑅𝐻) increases monotonically with increasing normalized applied displacement 𝛥𝑑∕(2𝑅)
etween the platens until reaching a local maximum beyond which it suddenly drops to a small value. The sudden drop occurs at
arger values of the force 𝑃∕(𝜋𝑅𝐻) for smaller ratios 𝜎𝚌𝚜∕𝜎𝚝𝚜, that is, for materials with larger uniaxial tensile strength 𝜎𝚝𝚜.

As shown by the third column of the contour plots in Fig. 6(b), the sudden drop in the force in Fig. 6(a) is the manifestation
f the appearance of a crack splitting the specimen into disconnected pieces. The first and second columns of the contour plots in
ig. 6(b) reveal the formation process of that splitting crack. In general, the pattern of the splitting crack is not symmetric due, in
art, to its brutal appearance and, in part, to the unstructured nature of the FE mesh. For these reasons, different meshes lead to
imilar, yet not identical, patterns.

For the specimens with the two smallest compressive-to-tensile strength ratios 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 5 and 8, the first column of contour
lots shows that the phase field 𝑣 first decreases from its initial value of 1 near the platens as a consequence of the strength surface
(𝝈) = 0 of the material being violated there. Upon further loading, the second column of contour plots shows that the region
here 𝑣 < 1 grows in size, but still 𝑣 does not quite localize near 0. This growth is also the direct result of the strength surface being
iolated. Note, in particular, that at this stage the strength of the material has been exceeded at the center of the specimen. Upon
urther loading the phase field 𝑣 finally localizes near 0 and the splitting crack is formed. The appearance of the crack is brutal,
aking it difficult to separate its nucleation from its propagation.

For the specimen with the largest compressive-to-tensile strength 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 20, the formation process of the splitting crack is
imilar to that for 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 5 and 8, with the key difference that the initial decrease of the phase field 𝑣 takes places around the
enter of the specimen, and not near the platens, since that is the location in the specimen where the strength of the material is
nitially exceeded.

The above description of the formation process of the splitting crack is consistent with direct visual observations reported in the
iterature for, e.g., granite aplite and dolerite (Colback, 1966), Carrara marble (Wong et al., 2014), and PMMA (Garcia-Fernandez
t al., 2018).

Summing up, the results in Fig. 6 show that the process of nucleation of fracture in the Brazilian test is indeed dominated by
he strength of the material, with the caveat that the first violation of the strength surface  (𝝈) = 0 in the specimen does not
orrespond to the instance when the force exerted by the platens reaches the peak value that precedes the appearance of a splitting
rack. Instead, the stress around the center of the specimen must be in violation of the strength of the material for the splitting crack
o appear. The difference between the instance at which the strength of the material is first violated and that at which the splitting
rack forms can be admittedly large. For instance, in terms of the value of the normalized force 𝑃∕(𝜋𝑅𝐻), this difference is about
0% for the specimen with ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 5. By contrast, the difference between the instance at which the strength of the material
s first violated around the center of the specimen and that at which the splitting crack forms is small. In terms, again, of the value
f the normalized force 𝑃∕(𝜋𝑅𝐻), it is less than 1% for all three ratios 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 5, 8, and 20.

.2. The effect of the radius of curvature 𝑅𝚙 of the platens

Fig. 7 presents results analogous to those in Fig. 6 from simulations carried out with platens of the three different radii of
urvature 𝑅𝚙 = +∞, 1.5𝑅, 1.1𝑅. The results correspond to specimens with compressive-to-tensile strength ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 8 and
ritical energy release rate 𝐺𝑐 = 1000 N∕m.

Similar to the conclusion established in Section 2 when comparing Figs. 5 to 3, the main observation from the results presented in
ig. 7 is that the decrease of the radius of curvature 𝑅𝚙 of the platens has a similar effect as the increase of the compressive-to-tensile
13

trength ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜 of the material.
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Fig. 6. Simulations of Brazilian tests carried out with curved platens of radius of curvature 𝑅𝚙 = 1.5𝑅 on specimens with three different compressive-to-tensile
strength ratios 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 5, 8, 20 and critical energy release rate 𝐺𝑐 = 1000 N∕m. (a) The normalized force 𝑃∕(𝜋𝑅𝐻) as a function of the normalized applied
displacement 𝛥𝑑∕(2𝑅). (b) Contour plots, over the undeformed configuration, of the phase field 𝑣 at three select values of the normalized force 𝑃∕(𝜋𝑅𝐻); the
white line in first two columns delineates the regions of the specimen where the strength surface  (𝝈) = 0 of the material is violated.

In particular, smaller values of 𝑅𝚙 lead to larger peak normalized forces 𝑃∕(𝜋𝑅𝐻) preceding the appearance of a splitting crack.
The location where the phase field 𝑣 first decreases from 1 also depends on 𝑅𝚙 in a similar manner as on 𝜎𝚌𝚜∕𝜎𝚝𝚜. Accordingly, for
the two largest radii of curvature 𝑅𝚙 = +∞ and 1.5𝑅, the first column of the contour plots in Fig. 7(b) shows that 𝑣 < 1 near the
platens. For the smallest value 𝑅 = 1.1𝑅, the corresponding contour plot shows that 𝑣 < 1 around the center of the specimen.
14
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Fig. 7. Simulations of Brazilian tests on specimens with compressive-to-tensile strength ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 8 and critical energy release rate 𝐺𝑐 = 1000 N∕m, carried
out with platens of three different radii of curvature 𝑅𝚙 = +∞, 1.5𝑅, 1, 1𝑅. (a) The normalized force 𝑃∕(𝜋𝑅𝐻) as a function of the normalized applied displacement
𝛥𝑑∕(2𝑅). (b) Contour plots, over the undeformed configuration, of the phase field 𝑣 at three select values of the normalized force 𝑃∕(𝜋𝑅𝐻).

Moreover, the difference between the instance at which the strength of the material is first violated (the first column in Fig. 7(b))
15

and that at which the splitting crack is formed (the third column in Fig. 7(b)) can be large, in excess of 85%. By contrast, the
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Fig. 8. Simulations of Brazilian tests on specimens with compressive-to-tensile strength ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 5 and critical energy release rate 𝐺𝑐 = 1000 N∕m, carried
out with platens of three different radii of curvature 𝑅𝚙 = +∞, 1.5𝑅, 1, 1𝑅. (a) The normalized force 𝑃∕(𝜋𝑅𝐻) as a function of the normalized applied displacement
𝛥𝑑∕(2𝑅). (b) Contour plots, over the undeformed configuration, of the phase field 𝑣 at three select values of the normalized force 𝑃∕(𝜋𝑅𝐻).

difference between the instance at which the strength of the material is first violated around the center of the specimen (the second
column in Fig. 7(b)) and that at which the splitting crack is formed is relatively small. In terms of the value of the normalized force
𝑃∕(𝜋𝑅𝐻), the difference is less than 3% for 𝑅 = +∞ and 1.5𝑅 and about 6% for 𝑅 = 1.1𝑅.
16
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Fig. 9. Simulations of Brazilian tests on specimens with compressive-to-tensile strength ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 20 and critical energy release rate 𝐺𝑐 = 1000 N∕m,
carried out with platens of three different radii of curvature 𝑅𝚙 = +∞, 1.5𝑅, 1, 1𝑅. (a) The normalized force 𝑃∕(𝜋𝑅𝐻) as a function of the normalized applied
displacement 𝛥𝑑∕(2𝑅). (b) Contour plots, over the undeformed configuration, of the phase field 𝑣 at three select values of the normalized force 𝑃∕(𝜋𝑅𝐻).

For completeness, Figs. 8 and 9 present results analogous to those presented in Fig. 7 for specimens with compressive-to-tensile
strength ratios 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 5 and 20. Of note from these results is the fact that, again, the value of the normalized force 𝑃∕(𝜋𝑅𝐻) at
which the strength of the material is first violated around the center of the specimens (the second columns in Figs. 8(b) and 9(b))
is similar to the value at which the splitting crack is formed (the third columns in Figs. 8(b) and 9(b)).
17
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Fig. 10. The normalized force 𝑃∕(𝜋𝑅𝐻) as a function of the normalized applied displacement 𝛥𝑑∕(2𝑅) from simulations of Brazilian tests carried out with flat
(𝑅𝚙 = +∞) platens on specimens with compressive-to-tensile strength ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 20 and three different critical energy release rates 𝐺𝑐 = 100, 500, 1000 N∕m.

4.3. The effect of the critical energy release rate 𝐺𝑐

All the results presented in Figs. 6 through 9 above pertain to specimens with the same value 𝐺𝑐 = 1000 N∕m of the critical energy
release rate. In order to gain insight into the effect of 𝐺𝑐 on how cracks nucleate/propagate in a Brazilian test, Fig. 10 presents
results from simulations carried out on specimens with the three different values 𝐺𝑐 = 100, 500, 1000 N∕m. They correspond to flat
(𝑅𝚙 = +∞) platens, specimens with compressive-to-tensile strength ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 20, and show the normalized force 𝑃∕(𝜋𝑅𝐻)
exerted by the platens as a function of the normalized applied displacement 𝛥𝑑∕(2𝑅).

A quick glance at Fig. 10 suffices to realize that the three sets of force–deformation responses are very similar to one another
and hence that the critical energy release rate 𝐺𝑐 of the specimen does not have a very significant effect in the Brazilian test. These
results serve to further confirm that the nucleation of fracture in a Brazilian test is dominated first and foremost by the strength of
the material.

5. Summary and a new protocol to deduce 𝝈𝚝𝚜 from a Brazilian test

The where. For materials that can be considered homogeneous, isotropic, linear elastic brittle, and that feature a compressive
strength 𝜎𝚌𝚜 that is larger by at least a factor of 5 than their tensile strength 𝜎𝚝𝚜, the analysis presented in this work has established
that fracture in a Brazilian test will nucleate either around the center of the specimen or near the region of contact with the platens.

The use of flat (𝑅𝚙 = +∞) platens favors the nucleation of fracture near the region of contact with the platens, while the use
of curved platens with a radius of curvature 𝑅𝚙 that is comparable to that of the specimen, e.g., 𝑅𝚙 = 1.1𝑅, favors the nucleation
around the center of the specimen.

In addition to the platens’ radius of curvature, the location where fracture nucleates is also strongly dependent on the
compressive-to-tensile strength ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜 of the material. Materials with a compressive strength that is much larger than their
tensile strength favor a nucleation of fracture around the center of the specimen. On the other hand, materials with a compressive
strength that is larger but not much larger than their tensile strength favor a nucleation of fracture near the region of contact with
the platens.

Irrespective of the location of its nucleation, the process of fracture in a Brazilian test invariably leads to the ultimate appearance
of a crack in the direction of the applied load that splits the specimen into disconnected pieces. The appearance of this splitting
crack is brutal, making it difficult to distinguish its nucleation from its propagation.

The when. The analysis presented in this work has established as well that fracture in a Brazilian test is dominated first and foremost
by the strength of the material.

Precisely, irrespective of its location, the nucleation of fracture involves the violation of the strength surface  (𝝈) = 0 of the
material at stress states that are in the mixed quadrant (𝜎1 ≥ 0, 𝜎2 < 0, 0) in the space of principal stresses (𝜎1, 𝜎2, 0). The nucleation of
fracture around the center of the specimen involves the violation of the strength surface around a stress state of the form (𝜎𝛼 ,−3𝜎𝛼 , 0)
with 𝜎𝛼 > 0 — that is, a stress state with strong stress triaxiality — while the nucleation of fracture near the region of contact with
the platens involves the violation of the strength surface around the stress state (0,−𝜎𝛽 , 0) with 𝜎𝛽 > 0 — that is, a stress state of
uniaxial compression.

Critically, by the time that a crack splitting the specimen into disconnected pieces appears, the strength surface  (𝝈) = 0 of the
material has already been violated not just at a sole material point 𝐗 but over a sizable subdomain of the specimen. In other words,
the peak or maximum force 𝑃𝑚𝑎𝑥 in the force–deformation response of the specimen that signals the appearance of a splitting crack
18

in the Brazilian test does not correlate with the first instance at which the strength of the material is exceeded.
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Fig. 11. Schematic illustrating that the formula (21) corresponds to the extrapolation of the strength point  = (diag(𝜎𝛼 ,−3𝜎𝛼 , 0)) = 0, with 𝜎𝛼 = 𝑃𝑚𝑎𝑥∕(𝜋𝑅𝐻)
obtained from a Brazilian test carried out with flat (𝑅𝚙 = +∞) platens, and the point of uniaxial compressive strength  = (diag(0,−𝜎𝚌𝚜 , 0)) = 0 to the point of
uniaxial tensile strength  = (diag(𝜎𝚝𝚜 , 0, 0)) = 0 in the space of principal stresses (𝜎1 , 𝜎2 , 0). The point 𝝈 = diag(𝜎𝛼 ,−3𝜎𝛼 , 0) corresponds to the violation of the
strength surface of the material at the center of the specimen.

Nevertheless, the analysis has revealed that the value of the force, 𝑃𝛼 say, at which the strength surface  (𝝈) = 0 is first violated
around the center of specimen is relatively close to the value of the maximum force 𝑃𝑚𝑎𝑥 at which a splitting crack appears. As
elaborated next, this correlation can be exploited to establish a direct link between the maximum force 𝑃𝑚𝑎𝑥 measured in a Brazilian
test and the tensile strength 𝜎𝚝𝚜 of the material being tested.

5.1. A new protocol to deduce the tensile strength 𝜎𝚝𝚜 of a material from a Brazilian test

As emphasized from the outset, practitioners make use of the Brazilian test to estimate the tensile strength 𝜎𝚝𝚜 of a material
of interest. They do so by directly linking the maximum force 𝑃𝑚𝑎𝑥 measured by the testing machine prior to the splitting of the
specimen to 𝜎𝚝𝚜 via one of the formulas (1) or (2).

Yet, as anticipated in the Introduction, and as demonstrated throughout this paper and summarized above, this protocol is
incongruous on two counts. First, the nucleation of fracture in a Brazilian test involves the violation of the strength surface  (𝝈) = 0
of the material at points in stress space that are far from a state of uniaxial tension where 𝝈 = diag(𝜎 > 0, 0, 0). Second, by the
time that the maximum force 𝑃𝑚𝑎𝑥 leading to the splitting of the specimen is reached, the strength of the material has already been
exceeded over large parts of the specimen.

Thus, the only rational way that the maximum force 𝑃𝑚𝑎𝑥 measured from a Brazilian test can be used to estimate 𝜎𝚝𝚜 is to first
establish a link between 𝑃𝑚𝑎𝑥 and a corresponding point on the strength surface  (𝝈) = 0 of the material and to then extrapolate
that point to the point of uniaxial tensile strength  (diag(𝜎𝚝𝚜, 0, 0)) = 0.

As remarked above, the results presented in Section 4 have shown that the force 𝑃𝛼 at which the strength surface  (𝝈) = 0
of the material is first violated around the center of the specimen happens to be well approximated by the maximum force 𝑃𝑚𝑎𝑥,
especially when the test is carried out with flat (𝑅𝚙 = +∞) platens. Making use of the classical solution of Hondros (1959), recalled
in Appendix D for completeness, this approximation allows us to directly link the force 𝑃𝑚𝑎𝑥 with the point

(𝜎1, 𝜎2, 𝜎3) = (𝜎𝛼 ,−3𝜎𝛼 , 0) =
(

𝑃𝑚𝑎𝑥
𝜋𝑅𝐻

,−
3𝑃𝑚𝑎𝑥
𝜋𝑅𝐻

, 0
)

(20)

on the strength surface  (𝝈) = 0 of the material.
Having determined the point (20) on the surface  (𝝈) = 0 directly in terms of the maximum force 𝑃𝑚𝑎𝑥 measured from a Brazilian

test carried out with flat (𝑅𝚙 = +∞) platens, the final step is to extrapolate (20) to the point  (diag(𝜎𝚝𝚜, 0, 0)) = 0 so as to estimate
the uniaxial tensile strength 𝜎𝚝𝚜 of the material. Here, as illustrated schematically by Fig. 11, we propose to do so by assuming
that the strength surface  (𝝈) = 0 of the material can be described as a Drucker–Prager strength surface (6), which, as noted in
Remark 2 above, has been shown to be descriptive of many nominally elastic brittle materials. Such a model is fully characterized
by two points in stress space and hence provides a unique extrapolation to  (diag(𝜎𝚝𝚜, 0, 0)) = 0 from knowledge of (20) and the
uniaxial compressive strength 𝜎𝚌𝚜. A straightforward calculation shows that the extrapolated result for 𝜎𝚝𝚜 is given by the formula

𝜎 = 𝑓
(

𝑃 , 𝜎
) 𝑃𝑚𝑎𝑥 , (21)
19

𝚝𝚜 𝑚𝑎𝑥 𝚌𝚜 𝜋𝑅𝐻
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Table 2
Accuracy of the values of the uniaxial tensile strength 𝜎𝚝𝚜 predicted by the formula (21).
𝜎𝚝𝚜 (MPa) 𝜎𝚌𝚜∕𝜎𝚝𝚜 𝑃𝑚𝑎𝑥 (kN) 𝑓 (𝑃𝑚𝑎𝑥 , 𝜎𝚌𝚜) Predicted 𝜎𝚝𝚜 (MPa) 𝜎−

𝚝𝚜
(MPa) 𝜎+

𝚝𝚜
(MPa)

200 5 116 1.363 201 119 201
125 8 89 1.174 132 90 154
50 20 41 0.942 50 42 72

where 𝑓
(

𝑃𝑚𝑎𝑥, 𝜎𝚌𝚜
)

is a factor that, as indicated by its arguments, depends on the maximum force 𝑃𝑚𝑎𝑥 measured in the test and
the uniaxial compressive strength 𝜎𝚌𝚜 of the material. It is given by the fully explicit expression

𝑓
(

𝑃𝑚𝑎𝑥, 𝜎𝚌𝚜
)

=

(
√

13 − 2
) 𝜋𝑅𝐻

𝑃𝑚𝑎𝑥
𝜎𝚌𝚜

2𝜋𝑅𝐻
𝑃𝑚𝑎𝑥

𝜎𝚌𝚜 −
√

13 − 2
. (22)

The following remarks are in order.

• Being based on the analysis presented in Section 4, aimed at understanding the Brazilian test for standard concrete, rocks, and
ceramics, the formula (21) with (22) applies to materials with compressive-to-tensile strength ratios 𝜎𝚌𝚜∕𝜎𝚝𝚜 ≥ 5. Whether it
remains applicable to materials with 𝜎𝚌𝚜∕𝜎𝚝𝚜 < 5 would be worth studying in future work.

• Noting that the formula (21) with (22) can be rearranged in the form 𝑃𝑚𝑎𝑥∕(𝜋𝑅𝐻) = 2𝜎𝚝𝚜𝜎𝚌𝚜∕[(2+
√

13)𝜎𝚝𝚜 −(2−
√

13)𝜎𝚌𝚜], we
can readily deduce that the factor (22) can be rewritten solely in terms of the compressive-to-tensile strength ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜 as
follows:

𝑓 =

√

13
2

− 1 +

(
√

13
2

+ 1

)

𝜎𝚝𝚜
𝜎𝚌𝚜

.

This result makes it apparent that the factor (22) is a monotonically decreasing function of the compressive-to-tensile strength
ratio 𝜎𝚌𝚜∕𝜎𝚝𝚜, one that is bounded from below (at 𝜎𝚌𝚜∕𝜎𝚝𝚜 = +∞) and from above (at 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 5) according to

0.803 ≈

√

13
2

− 1 ≤ 𝑓 ≤
3
√

13
5

− 4
5
≈ 1.363. (23)

• In practice, the compressive strength 𝜎𝚌𝚜 of the material being tested may be entirely unknown. In that case, the relatively
tight inequalities (23) for the factor (22) can be used to obtain the lower and upper bounds

𝜎−
𝚝𝚜

∶= 0.803
𝑃𝑚𝑎𝑥
𝜋𝑅𝐻

≤ 𝜎𝚝𝚜 ≤ 1.363
𝑃𝑚𝑎𝑥
𝜋𝑅𝐻

=∶ 𝜎+
𝚝𝚜
. (24)

As a first step to gain insight into the accuracy of the formula (21), Table 2 reports its predictions for the three materials
onsidered in Section 4 with compressive-to-tensile strength ratios 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 5, 8, and 20. For completeness, Table 2 also includes
he corresponding values of the maximum force 𝑃𝑚𝑎𝑥, the factor (22), as well as of the lower and upper bounds (24). For all three
aterials, the formula (21) yields results for the uniaxial tensile strength 𝜎𝚝𝚜 that are within 5% of the exact values.

To continue gaining insight into the accuracy of the formula (21), we are in the process of confronting it with experimental
esults for a variety of materials. We plan to report our findings in future parts of this work, where we will also highlight the critical
mportance of having experimental knowledge of large parts of the strength surface  (𝝈) = 0 of the material, and not just of its
niaxial tensile strength 𝜎𝚝𝚜.

.2. Comparisons with the ISRM and the ASTM formulas (1) and (2)

We close by circling back to the standardized formulas (1) and (2). Tables 3, 4, and 5 report their predictions for the three
aterials considered in Section 4 with compressive-to-tensile strength ratios 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 5, 8, and 20. When compared with the exact

esults — rather serendipitously, one may argue — the ISRM formula (1) for Brazilian tests carried out with curved (𝑅𝚙 = 1.5𝑅)
latens and the ASTM formula (1) for Brazilian tests carried out with flat (𝑅𝚙 = +∞) platens perform reasonably well, more so for
he specimens with the two largest compressive-to-tensile strength ratios 𝜎𝚌𝚜∕𝜎𝚝𝚜 = 8 and 20. The ASTM formula (2) for Brazilian
ests carried out with curved (𝑅𝚙 = 1.5𝑅) platens does not share the same fortune.

Table 3
Accuracy of the ISRM formula (1) for Brazilian tests carried out with curved (𝑅𝚙 = 1.5𝑅) platens.

𝜎𝚝𝚜 (MPa) 𝜎𝚌𝚜∕𝜎𝚝𝚜 𝑃𝑚𝑎𝑥 (kN) Predicted 𝜎𝚝𝚜 (MPa) Error

200 5 125 159 26%
125 8 91 116 8%
50 20 4 55 9%
20
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Table 4
Accuracy of the ASTM formula (1) for Brazilian tests carried out with flat (𝑅𝚙 = +∞) platens.

𝜎𝚝𝚜 (MPa) 𝜎𝚌𝚜∕𝜎𝚝𝚜 𝑃𝑚𝑎𝑥 (kN) Predicted 𝜎𝚝𝚜 (MPa) Error

200 5 116 148 35%
125 8 89 113 11%
50 20 41 53 6%

Table 5
Accuracy of the ASTM formula (2) for Brazilian tests carried out with curved (𝑅𝚙 = 1.5𝑅) platens.

𝜎𝚝𝚜 (MPa) 𝜎𝚌𝚜∕𝜎𝚝𝚜 𝑃𝑚𝑎𝑥 (kN) Predicted 𝜎𝚝𝚜 (MPa) Error

200 5 125 101 98%
125 8 91 74 37%
50 20 43 35 43%
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ppendix A. The derivation of the gap function (9)

By definition, the gap function in the boundary condition (8) is given by

𝑔(𝐮(𝐗, 𝑡);𝛥𝑑) ∶= −

(

𝐗 + 𝐮(𝐗, 𝑡) − 𝐲𝚙(𝐗;𝛥𝑑)
)

⋅ 𝐍𝚙(𝐗)

|

(

𝐗 + 𝐮(𝐗, 𝑡) − 𝐲𝚙(𝐗;𝛥𝑑)
)

⋅ 𝐍𝚙(𝐗)|
‖𝐗 + 𝐮(𝐗, 𝑡) − 𝐲𝚙(𝐗;𝛥𝑑)‖

= −
(

𝐗 + 𝐮(𝐗, 𝑡) − 𝐲𝚙(𝐗;𝛥𝑑)
)

⋅ 𝐍𝚙(𝐗), (25)

where

𝐲𝚙(𝐘;𝛥𝑑) =
⎧

⎪

⎨

⎪

⎩

𝐘 − 𝛥𝑑
2
𝐞2, 𝑌2 > 0

𝐘 + 𝛥𝑑
2
𝐞2, 𝑌2 < 0

and 𝐍𝚙(𝐘) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 1
𝑅𝚙

(

𝑌1𝐞1 +
√

𝑅2
𝚙
− 𝑌 2

1 𝐞2
)

, 𝑌2 > 0

− 1
𝑅𝚙

(

𝑌1𝐞1 −
√

𝑅2
𝚙
− 𝑌 2

1 𝐞2
)

, 𝑌2 < 0

stand, respectively, for the deformation field (rigid translation) of the platens and for the outward unit normal of the surface

𝛤𝚙 = 𝛤 𝑇
𝚙
∪ 𝛤𝐵

𝚙
with

⎧

⎪

⎨

⎪

⎩

𝛤 𝑇
𝚙

= {𝐘 ∶
√

𝑌 2
1 +

(

𝑌2 − 𝑅 + 𝑅𝚙

)2 = 𝑅𝚙, 𝑌2 > 0, |𝑌3| <
𝐻𝚙

2
}

𝛤𝐵
𝚙

= {𝐘 ∶
√

𝑌 2
1 +

(

𝑌2 + 𝑅 − 𝑅𝚙

)2 = 𝑅𝚙, 𝑌2 < 0, |𝑌3| <
𝐻𝚙

2
}

(26)

of the platens that may come in contact with the specimen during the loading process, while

𝐗 = arg min ‖𝐗 + 𝐮(𝐗, 𝑡) − 𝐲𝚙(𝐘;𝛥𝑑)‖
21

𝐘∈𝛤𝚙
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is the material point on the surface (26) of the platens whose image 𝐲𝚙(𝐗;𝛥𝑑) is closest to the image 𝐱 = 𝐗+ 𝐮(𝐗, 𝑡) of the material
point 𝐗 on the lateral boundary 𝜕𝛺 of the specimen at any given change in separation 𝛥𝑑 between the platens.

A standard calculation shows that

𝐗 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑅𝚙𝑥1
√

𝑥21 +
(

𝑥2 − 𝑅 + 𝑅𝚙 +
𝛥𝑑
2

)2
𝐞1 +

⎛

⎜

⎜

⎜

⎜

⎝

𝑅𝚙

√

(

𝑥2 − 𝑅 + 𝑅𝚙 +
𝛥𝑑
2

)2

√

𝑥21 +
(

𝑥2 − 𝑅 + 𝑅𝚙 +
𝛥𝑑
2

)2
+ 𝑅 − 𝑅𝚙

⎞

⎟

⎟

⎟

⎟

⎠

𝐞2 + 𝑥3𝐞3, 𝑋2 > 0

𝑅𝚙𝑥1
√

𝑥21 +
(

𝑥2 + 𝑅 − 𝑅𝚙 −
𝛥𝑑
2

)2
𝐞1 −

⎛

⎜

⎜

⎜

⎜

⎝

𝑅𝚙

√

(

𝑥2 + 𝑅 − 𝑅𝚙 −
𝛥𝑑
2

)2

√

𝑥21 +
(

𝑥2 + 𝑅 − 𝑅𝚙 −
𝛥𝑑
2

)2
+ 𝑅 − 𝑅𝚙

⎞

⎟

⎟

⎟

⎟

⎠

𝐞2 + 𝑥3𝐞3, 𝑋2 < 0

,

where we have made use of the indicial notation 𝑥𝑖 = 𝑋𝑖 + 𝑢𝑖(𝐗, 𝑡). With the above results at hand, the gap function (25) can be
written in the fully explicit form

𝑔(𝐮(𝐗, 𝑡);𝛥𝑑) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑅𝚙

(𝑥1 −𝑋1)𝑋1 +
1
𝑅𝚙

(

𝑥2 −𝑋2 +
𝛥𝑑
2

)

√

𝑅2
𝚙
−𝑋

2
1, 𝑋2 > 0

1
𝑅𝚙

(𝑥1 −𝑋1)𝑋1 −
1
𝑅𝚙

(

𝑥2 −𝑋2 −
𝛥𝑑
2

)

√

𝑅2
𝚙
−𝑋

2
1, 𝑋2 < 0

. (27)

ow, the result (27) is general in that it applies to large changes in separation 𝛥𝑑 between the platens. Leveraging the fact that the
ocus here is on specimens whose mechanical response can be described as linear elastic brittle, it is necessary to consider (27) in
he limit of small deformations. To that end, define 𝜁 as a vanishingly small parameter and consider that 𝛥𝑑 and 𝐮 are of 𝑂(𝜁 ). In
he limit as 𝜁 ↘ 0, the gap function (27) reduces, to 𝑂(𝜁 ), to the expression (9) in the main body of the text.

ppendix B. The augmented Lagrangian treatment of the contact boundary condition

Following, e.g., Simo and Laursen (1992), the augmented Lagrangian treatment of the contact boundary condition (11)3 amounts
o the replacement of the right-hand side of (11)3 by

−
⟨

𝛬(𝑘) + 1
𝜉 𝑅𝐸

𝑔
(

𝐮(𝑘);𝛥𝑑
)

⟩

𝐍,

where 𝛬(𝑘) ≥ 0 is a fixed estimate of the Lagrange multiplier 𝛬 that would make the constraint (8) be satisfied exactly. The superscript
(𝑘) in this last expression reflects the fact that the treatment involves an iteration process, one where the problem

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

div
[

1
2(1 + 𝜈)

(

∇𝐮(𝑘) + ∇𝐮(𝑘)𝑇
)

+ 𝜈
(1 + 𝜈)(1 − 2𝜈)

(div𝐮(𝑘))𝐈
]

= 𝟎, (𝐗, 𝑡) ∈ 𝛺 × [0, 𝑇 ]
[

1
2(1 + 𝜈)

(

∇𝐮(𝑘) + ∇𝐮(𝑘)𝑇
)

+ 𝜈
(1 + 𝜈)(1 − 2𝜈)

(div𝐮(𝑘))𝐈
]

𝐍 = 𝟎, (𝐗, 𝑡) ∈ 𝜕𝛺 ∪ 𝜕𝛺 × [0, 𝑇 ]
[

1
2(1 + 𝜈)

(

∇𝐮(𝑘) + ∇𝐮(𝑘)𝑇
)

+ 𝜈
(1 + 𝜈)(1 − 2𝜈)

(div𝐮(𝑘))𝐈
]

𝐍 = −
⟨

𝛬(𝑘) + 1
𝜉 𝑅𝐸

𝑔
(

𝐮(𝑘);𝛥𝑑
)

⟩

𝐍, (𝐗, 𝑡) ∈ 𝜕𝛺 × [0, 𝑇 ]

𝐮(𝑘)(𝐗, 0) = 𝟎, 𝐗 ∈ 𝛺

,

is solved for 𝐮(𝑘) followed by an update of the multiplier

𝛬(𝑘+1) =
⟨

𝛬(𝑘) + 1
𝜉 𝑅𝐸

𝑔
(

𝐮(𝑘);𝛥𝑑
)

⟩

until the tolerance max{𝑔
(

𝐮(𝑘);𝛥𝑑
)

} ≤ 𝚃𝚘𝚕𝑔 is reached. For all the calculations presented in the main body of the text, 𝛬(0) = 0,
𝚃𝚘𝚕𝑔 = 10−6𝑅, and 𝜉−1 = 10−2𝐸.

Appendix C. A comment on the intrinsic material length scales in the fracture theory (14)–(15)

As noted in Remark 8 in the main body of the text, a key aspect of the fracture theory (14)–(15) is that it features (not just one
but) a family of intrinsic material length scales.

To illustrate this key aspect, Fig. 12 presents the predictions from the theory for the critical values 𝜎𝑐 of the applied stress 𝜎
at which fracture nucleates from the pre-existing crack in single-edge crack specimens subjected to uniaxial tension and in slanted
center crack specimens subjected to equibiaxial tension; see the insets in Figs. 12(a) and 12(b). The results pertain to thin rectangular
plates, of height 𝐿 = 600 mm and width 𝐵 = 200 mm for the specimens under uniaxial tension and of height 𝐿 = 600 mm and width
𝐵 = 𝐿 = 600 mm for the specimens under equibiaxial tension, that are made of a material with Young’s modulus 𝐸 = 100 GPa,
Poisson’s ratio 𝜈 = 0.20, Drucker–Prager strength surface with tensile and compressive strength 𝜎𝚝𝚜 = 200 MPa and 𝜎𝚌𝚜 = 1000 MPa,
22

and critical energy release rate 𝐺𝑐 = 1000 N∕m. For both problems, it suffices to consider the same value of regularization length
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Fig. 12. Theoretical predictions — from the simulations of the tests schematically depicted in the insets — illustrating the transition from Griffith-dominated
to strength-dominated nucleation of fracture as the size 𝐴 of the crack decreases from large to small. The results show the critical stress 𝜎𝑐 at which fracture
nucleates from the crack as a function of its size 𝐴. For direct comparison, the plots include the predictions of nucleation based on the Griffith competition
between the elastic and fracture energies (blue dashed line) and based on strength (orange dotted line). The intercepts between these two limiting results —
𝐴 = 0.63 mm in part (a) and 𝐴 = 1.56 mm in part (b) — roughly identify the material length scales built in the theory corresponding to these two cases.

as in Section 4, namely, 𝜀 = 0.5 mm. The corresponding value for the parameter 𝛿𝜀 is 2.65; see Table 1. The results are shown as a
function of the size 𝐴 of the pre-existing crack. For the slanted center crack specimens, the crack is oriented at 𝜃 = 45◦ with respect
to the axis of symmetry of the specimen.

Given than both configurations are classical problems in linear elastic fracture mechanics, there are well established formulas
for the critical values 𝜎𝑐 at which large cracks start growing. They read (Tada et al., 1973)

𝜎𝑐 =
cos

(𝜋𝐴
2𝐵

)

√

𝐺𝑐𝐸
𝜋𝐴

[

0.752 + 2.02𝐴
𝐵

+ 0.37
(

1 − sin
(𝜋𝐴
2𝐵

))3]
√

2𝐵
𝜋𝐴

tan
(𝜋𝐴
2𝐵

)

(28)

for the single-edge crack specimens under uniaxial tension and (Sih et al., 1962)

𝜎𝑐 =
√

𝐺𝑐𝐸
𝜋𝐴

(29)

for the slanted center crack specimens under equibiaxial tension. In the opposite limit of small cracks, it is trivial to deduce that

𝜎𝑐 = 𝜎𝚝𝚜 (30)

for the specimens under uniaxial tension and

𝜎𝑐 =
2𝜎𝚌𝚜𝜎𝚝𝚜

3𝜎𝚌𝚜 − 𝜎𝚝𝚜
≡ 𝜎𝚋𝚜 (31)

for the specimens under equibiaxial tension, where we have introduced the notation 𝜎𝚋𝚜 to denote the biaxial tensile strength of the
material. Both sets of limiting results (28)–(29) and (30)–(31) are plotted in Fig. 12 to aid the discussion.

The results in Fig. 12(a) show that for crack sizes 𝐴 > 2 mm, nucleation of fracture is characterized by the Griffith competition
between the elastic and fracture energies of the material (blue dashed line). On the other hand, for crack sizes 𝐴 < 0.02 mm,
nucleation of fracture is characterized by the strength of the material (orange dotted line), in this case, its uniaxial tensile strength
𝑠𝚝𝚜 = 200 MPa. Finally, for crack sizes in the intermediate range 𝐴 ∈ [0.02, 2] mm, the results show that nucleation of fracture is
characterized by an interpolation between the strength and the Griffith competition between the elastic and fracture energies. The
material length scale in this case is thus about 0.2 mm.

Similar to Fig. 12(a), the results in Fig. 12(b) show that for crack sizes 𝐴 > 5 mm, nucleation of fracture is characterized by the
Griffith competition between the elastic and fracture energies of the material (blue dashed line), while for crack sizes 𝐴 < 0.05 mm,
nucleation of fracture is characterized by the strength of the material (orange dotted line), in this case, its biaxial tensile strength
𝑠𝚋𝚜 = 143 MPa. For crack sizes in the intermediate range 𝐴 ∈ [0.05, 5] mm, the results show that nucleation of fracture is characterized
by an interpolation between the strength and the Griffith competition between the elastic and fracture energies. The material length
scale in this case is thus about 0.5 mm.
23
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Appendix D. The classical solution of Hondros (1959)

One of the classical contributions in the study of the Brazilian test is that of Hondros (1959) who worked out the stress field
n the specimen under the idealizations that the platens apply a uniform pressure 𝑝 over an arc length 𝑎, so that 𝑝 = 𝑃∕(𝐻𝑎),

and that the state of stress is plane stress. By now, it has been well established that, irrespective of their radius of curvature, the
platens do not apply a uniform pressure to the specimen, but one that is strongly non-uniform. It has also been well established that,
prior to fracture, the stress fields that result in the specimen are essentially insensitive to the specifics of the non-uniform pressure
distribution applied by the platens, save, obviously, at the contact and the region immediately below; see, e.g., (Kourkoulis et al.,
2013; Yuan and Shen, 2017). This insensitivity justifies the use of the classical solution of Hondros (1959) away from the platens.

According to the solution of Hondros (1959), the principal stresses along the loading axis of symmetry in a specimen of radius
𝑅 and thickness 𝐻 are given by
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𝜎3(0, 𝑋2, 0) = 0

,

where, again, 𝑃 is the total force applied by the platens, 𝑎 is the arc length over which the uniform pressure 𝑝 = 𝑃∕(𝐻𝑎) is applied,
nd where we recall that the origin of the laboratory frame of reference is placed at the center of the specimen; see Fig. 1. Two
emarks are in order from these expressions. First, note that 𝜎2 ≤ 0 for all |𝑋2| ≤ 𝑅. Second, for small 𝑎 relative to 𝑅,

𝜎1(0, 0, 0) =
𝑃

𝜋𝑅𝐻
, 𝜎2(0, 0, 0) = − 3𝑃

𝜋𝑅𝐻
.

That is, irrespective of the applied force 𝑃 , 𝜎1 ≥ 0 and 𝜎1∕𝜎2 = −1∕3 at the center of the specimen. This is the result used to establish
the relation (20) in the main body of the text.
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