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HOMOGENIZATION OF ELASTIC DIELECTRIC COMPOSITES
WITH RAPIDLY OSCILLATING PASSIVE AND

ACTIVE SOURCE TERMS∗
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Abstract. This paper presents the derivation of the homogenized equations for the macroscopic
response of elastic dielectric composites containing space charges (i.e., electric source terms) that
oscillate rapidly at the length scale of the microstructure. The derivation is carried out in the setting
of small deformations and moderate electric fields by means of a two-scale asymptotic analysis. Two
types of rapidly oscillating space charges are considered: passive and active. The latter type corre-
sponds to space charges that appear within the composite in response to externally applied electrical
stimuli, while the former corresponds to space charges that are present within the composite from
the outset. The obtained homogenized equations reveal that the presence of (passive or active) space
charges within elastic dielectric composites can have a significant and even dominant effect on their
macroscopic response, possibly leading to extreme behaviors ranging from unusually large permittivi-
ties and electrostriction coefficients to metamaterial-type properties featuring negative permittivities.
These results suggest a promising strategy to design deformable dielectric composites—such as elec-
trets and dielectric elastomer composites—with exceptional electromechanical properties.
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expansions
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1. The problem. In this paper, we derive the homogenized equations governing
the macroscopic response of elastic dielectric composites, containing space charges
that oscillate at the length scale of the microstructure, in the so-called limit of small
deformations and moderate electric fields. The focus is on elastic dielectric composites
with even electromechanical coupling (such type of deformable dielectrics are often
times referred to in the literature as dielectric elastomers) and periodic microstructure,
which contain rapidly oscillating space charges of two types: passive and active.

Passive space charges refer to space charges that are present within the elastic
dielectric composite from the outset, in its ground state. A prominent class of ma-
terials that can be viewed as elastic dielectric composites containing passive space
charges is electrets (see, e.g., [18, 5, 15, 8]). On the other hand, active space charges
refer to space charges that are not present within the elastic dielectric composite in
its ground state. Instead, they appear within the composite as a result of externally
applied stimuli, for instance, by a charge injection process [21, 30]. Dielectric elas-
tomers filled with (semi)conducting or high-dielectric nanoparticles are thought to be
an example of such a class of materials [25, 21, 26, 20]. In this work, we shall consider
active charges that appear in proportionality to the electric field induced within the
composite by externally applied electrical stimuli.
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HOMOGENIZATION OF ELASTIC DIELECTRICS WITH SOURCES 1963

Ergo, consider an elastic dielectric composite with periodic microstructure of pe-
riod δ that occupies a bounded domain Ω ⊂ RN (N = 1, 2, 3), with smooth boundary
∂Ω and closure Ω = Ω ∪ ∂Ω, in its undeformed configuration; throughout this work,
again, attention is restricted to elastic dielectrics with even electromechanical cou-
pling. In the classical setting of small deformations and moderate electric fields (see
the Appendix), the permittivity, elasticity, and electrostriction tensors that character-
ize the local elastic dielectric response of the composite at any material point X ∈ Ω
are taken to be, without loss of generality and with help of the notation Y = (0, 1)N ,
of the forms

εδij(X) ∈ R, εδij(X) = εij(δ−1X) with εij(y) Y -periodic,(1)

Lδijkl(X) ∈ R, Lδijkl(X) = Lijkl(δ−1X) with Lijkl(y) Y -periodic,

Mδ
ijkl(X) ∈ R, Mδ

ijkl(X) = Mijkl(δ−1X) with Mijkl(y) Y -periodic,

respectively. Basic physical considerations dictate that1

εδij = εδji, εδijξiξj ≥ ε0ξkξk ∀ ξ ∈ RN ,(2)

Lδijkl = Lδklij = Lδjikl = Lδijlk, LδijklΞijΞkl ≥ θΞpqΞpq ∀Ξ ∈ RN×N ,(3)

M δ
ijkl = Mδ

jikl = Mδ
ijlk,(4)

where ε0 ≈ 8.85 × 10−12 F/m stands for the permittivity of vacuum and θ is some
positive constant, namely, the smallest eigenvalue of Lδijkl, which is required to be
positive. For mathematical expediency, we assume the following regularity properties:

(5) εδij ∈ C1(Ω), Lδijkl ∈ L∞(Ω), Mδ
ijkl ∈ L∞(Ω).

Here, we remark that the relatively strong regularity (5)1 of the components of
the permittivity tensor εδ(X) is invoked in order to leverage standard theorems
that will warrant mathematical well-posedness; more precisely, as elaborated be-
low, the regularity (5)1 is invoked here in order to obtain the sufficient regularity
for the electric fields needed to prove existence of solution for the mechanical fields
via the Lax–Milgram theorem. Such a regularity can be relaxed to allow for a general
class of piecewise constant values of εδ(X)—for instance, the piecewise constant values
of εδ(X) associated with particulate composites wherein the inclusions have smooth
boundaries—at the expense of possibly invoking more technical theorems (see, e.g.,
[4, 22]). We assume further that the composite is subjected to a prescribed electric
potential and a prescribed displacement,

(6) φ ∈ H3/2(∂Ω) and v ∈ H1/2(∂Ω; RN ),

on the entirety of its boundary ∂Ω; Neumann or mixed boundary conditions could be
considered at no significant further conceptual expense. Moreover, we assume that the
composite contains a distribution of space charges with density (per unit undeformed
volume)

(7) qδ ∈ L2(Ω).

Figure 1 illustrates a schematic of the composite and of its microstructure and space
charge content.

1Throughout this work we make use of the Einstein summation convention.
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Fig. 1. (a) Schematic of the elastic dielectric composite in its undeformed configuration Ω;
the boundary layer of incomplete unit cells needed to conform with the arbitrary geometry of its
boundary ∂Ω is marked in red. (b) Schematic of the unit cell Y that defines the periodic microstruc-
ture (of period δ) of the composite with the explicit illustration of the distribution of space charges
characterized by the space-charge density qδ(X).

In the limit of small deformations and moderate electric fields (see the Appendix),
the relevant equations of Maxwell and of balance of linear momentum can be shown
to reduce to the following one-way coupled boundary-value problems:

∂

∂Xi

[
−εδij(X)

∂ϕδ

∂Xj
(X)

]
= qδ(X), X ∈ Ω,

ϕδ(X) = φ(X), X ∈ ∂Ω

(8)

and 
∂

∂Xj

[
Lδijkl(X)

∂uδk
∂Xl

(X) +Mδ
ijkl(X)

∂ϕδ

∂Xk
(X)

∂ϕδ

∂Xl
(X)

]
= 0, X ∈ Ω,

uδi (X) = vi(X), X ∈ ∂Ω

(9)

for the electric potential ϕδ(X) and the displacement field uδ(X). The PDE (8)1 is the
standard equation that governs the electrostatic field within a dielectric medium that
contains a distribution of space charges. We remark that its restriction to the domain
Ω occupied by the solid (as opposed to the entire space RN where Maxwell’s equations
ought to be solved) is sufficient in the present context thanks to the prescription of
the Dirichlet boundary condition (8)2. On the other hand, the PDE (9)1 governs the
deformation of the solid that results from the electric field in addition to the applied
displacement boundary condition (9)2.

From a mathematical point of view, we remark that while the coupled system
of boundary-value problems (8)–(9) is nonlinear, the boundary-value problem (8) is
linear in the electric potential ϕδ(X) and the boundary-value problem (9) is linear
in the displacement field uδ(X). For any fixed δ > 0 then, granted the ellipticity
(2)2 and regularity (5)1 of the components of the permittivity tensor εδ(X), the
properties (6)1 and (7) of the boundary data and source term, and the smoothness of
∂Ω, the Lax–Milgram theorem ensures existence and uniqueness of the solution of (8)
for ϕδ(X) in the Sobolev space H1(Ω). The regularity (5)1, (6)1, (7) together with
the smoothness of ∂Ω imply in fact the stronger regularity result that ϕδ ∈ H2(Ω),
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and hence that Gradϕδ ∈ H1(Ω; RN ) ⊂ L4(Ω; RN ); see, e.g., Chapter 8 in [12],
Chapter 6.3 in [10], Theorem 8.3 in [23], and Theorem 9.16 in [7]. In turn, granted
the ellipticity (3)2 and boundedness (5)2 of the components of the elasticity tensor
Lδ(X), the boundedness (5)3 of the components of the electrostriction tensor Mδ(X),
the fact that Gradϕδ ∈ L4(Ω; RN ) so that by (the generalized) Hölder’s inequality
Gradϕδ ⊗Gradϕδ ∈ L2(Ω; RN×N ), the regularity (6)2 of the boundary data, and the
smoothness of ∂Ω, the Lax–Milgram theorem ensures existence and uniqueness of the
solution of (9) for the displacement field uδ(X) in the Sobolev space H1(Ω; RN ).

A specific class of space-charge densities qδ(X). In this work, we shall restrict
attention to space-charge densities qδ(X) of the following divergence form:

qδ(X) = −δ ∂

∂Xi

[
fk(X)

∂

∂Xi

[
ψk(δ−1X)

]]
(10)

= δ−1fk(X)gk(δ−1X)− ∂fk
∂Xi

(X)τki(δ−1X).

Here,

(11) f ∈ H2(Ω; RN ), g is Y -periodic, g ∈ L∞(Y ; RN ),
∫
Y

g(y)dy = 0,

and τki(y) = ∂ψk(y)/∂yi with ψ(y) defined in terms of g(y) as the unique solution
in H2(Y ; RN ) of the linear elliptic boundary-value problem

− ∂2ψk
∂yi∂yi

(y) = gk(y), y ∈ Y,

−∂ψk
∂yi

(y)ni = 0, y ∈ ∂Y,∫
Y
ψk(y)dy = 0,

(12)

where n in (12)2 stands for the outward unit normal to the boundary ∂Y of the unit
cell Y (see Figure 1(b)).

The choice (10) with (11)2,4 and (12) of space-charge density is motivated by phys-
ical requirements/observations as well as by mathematical expediency. Indeed, the
divergence form (10) together with the zero-average condition (11)4 and the bound-
ary condition (12)2 ensure global charge neutrality in Ω up to a boundary layer of
thickness δ (see Figure 1(a)). Moreover, the leading order term in (10) being O(δ−1)
implies that the content of charges at the “microscopic” length scale δ remains fi-
nite even in the limit as δ → 0 (in this limit, the space-charge density qδ(X) blows
up within a vanishingly small volume to lead to a microscopic distribution of finite
charges), consistent with physical expectations. We further remark that the form (10)
comprises two constitutive inputs: the functions f(X) and g(δ−1X). Roughly speak-
ing, the latter dictates the local distribution of charges at the microscopic length scale
δ of each unit cell. The former, on the other hand, dictates the possibly nonuniform
distribution of charges at the macroscopic length scale of Ω. Finally, it is also inter-
esting to note that source terms of the asymptotic form (10)—with leading O(δ−1)
and correction O(δ0)—can appear naturally when converting elliptic boundary-value
problems with nonhomogeneous Dirichlet boundary conditions to problems with ho-
mogeneous Dirichlet boundary conditions; see, e.g. section 18 of Chapter 1 in the
monograph by Bensoussan et al. [6].

The first objective of this work is to determine the elastic dielectric behavior of
the above-defined composite, as governed by the coupled boundary-value problems
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1966 VICTOR LEFÈVRE AND OSCAR LOPEZ-PAMIES

(8)–(9), for arbitrary but fixed or passive distribution of space charges with density
of the form (10) in the limit when the period of the microstructure δ → 0. Given
that the permittivity, elasticity, and electrostriction tensors (1) of the composite, as
well as the distribution of space charges (10) in it, vary spatially at the length scale
of δ, one expects the electric potential ϕδ(X) and the displacement field uδ(X) to
oscillate rapidly around smoothly varying macroscopic fields in such a limit. We show
in section 2 that this is indeed the case and work out the governing equations—that
is, the homogenized equations—for these macroscopic fields. The second objective of
this work is to determine the homogenized equations resulting from (8)–(9) for the
case when the space-charge density (10) is not fixed but active, in the sense that it
is taken to depend on the resulting macroscopic field for the electric potential ϕδ(X).
We work out the pertinent derivation in section 3. With the compound purpose
of demonstrating the use of the resulting homogenized equations and of illustrating
the dominant effect that space charges can have on the macroscopic behavior, we
conclude by presenting in section 4 sample results for a porous electret containing
passive charges on the walls of the pores.

2. Passive charges: The limit as δ → 0 by the method of two-scale
asymptotic expansions. In this section, we present the derivation of the homoge-
nized equations that emerge from the boundary-value problems (8)–(9) in the limit
as δ → 0 by means of the method of two-scale asymptotic expansions [31, 6]. In the
present context, this method amounts to looking for an asymptotic solution of the
equations (8)–(9) as δ → 0 of the form

ϕδ(X) =
∞∑
k=0

δkϕ(k)(X, δ−1X) and uδi (X) =
∞∑
k=0

δku
(k)
i (X, δ−1X),(13)

where the functions ϕ(k)(X, δ−1X) and u(k)(X, δ−1X) are Y -periodic in their sec-
ond argument and, according to the boundary conditions (8)2 and (9)2, such that
ϕ(0)(X, δ−1X) = φ(X), ϕ(k)(X, δ−1X) = 0 for k 6= 0, u(0)(X, δ−1X) = v(X), and
u(k)(X, δ−1X) = 0 for k 6= 0 on ∂Ω. In view of the one-way coupling of the boundary-
value problems (8)–(9), we begin in section 2.1 by working out the limit for the electric
potential ϕδ(X) and subsequently make use of this result to then work out the limit
for the displacement field uδ(X) in section 2.2.

A few words about the presentation are in order. A number of the results that are
obtained in section 2.1 are classical, yet we opt to include their presentation in order to
preserve the continuity of the derivation and, more critically, to better be able to point
to how the presence of space charges affects the homogenized equations. Similarly,
some of the results that are obtained in section 2.2 have been previously obtained
by Tian [37] (see also [38]) via the two-scale convergence method [1]. In addition
to providing an alternative derivation for those, their inclusion in the presentation
here preserves the continuity of the derivation and, more critically, aids in illustrating
how the addition of space charges (not present in the work of Tian [37]) impacts the
homogenized equations.

Before proceeding with the derivation per se, it is important to remark that while
the method of two-scale asymptotic expansions typically yields the right homogenized
equations (see, e.g., [6]), it is not a rigorous proof of the homogenization limit; this is
because the two-scale ansatz, (13) for the problem of interest here, may possibly be
incorrect beyond O(δ) due, for instance, to boundary-layer effects in the vicinity of
∂Ω; see, e.g., [32, 3] and references therein. The rigorous proof that the homogenized
equations derived here from the two-scale asymptotic expansion are indeed correct
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HOMOGENIZATION OF ELASTIC DIELECTRICS WITH SOURCES 1967

turns out to be quite technical because of the quadratic term Gradϕδ(X)⊗Gradϕδ(X)
in (9)1 for the balance of linear momentum. Such a rigorous proof will be presented
elsewhere.

2.1. The limit of the electric potential ϕδ(X) as δ → 0. Upon introducing
the variables x = X and y = δ−1X and the operator

Aδ = δ−2A(1) + δ−1A(2) + δ0A(3) with

A(1) = − ∂

∂yi

[
εij (y)

∂

∂yj

]
, A(2) = − ∂

∂yi

[
εij (y)

∂

∂xj

]
− ∂

∂xi

[
εij (y)

∂

∂yj

]
,(14)

A(3) = − ∂

∂xi

[
εij (y)

∂

∂xj

]
,

where ∂
∂xi

and ∂
∂yi

denote partial derivatives with respect to x and y, we begin by
recasting the PDE (8)1 for the electric potential ϕδ(X) in the more convenient form

Aδϕδ = qδ.(15)

Substituting the ansatz (13)1 in the PDE (15) and expanding in powers of δ leads to a
hierarchy of equations of a very distinctive structure for the functions ϕ(k)(x,y). The
first three of these equations turn out to be enough for our purposes here, namely, to
determine the first two terms ϕ(0)(x,y) and ϕ(1)(x,y) in the expansion (13)1. They
are of O(δ−2), O(δ−1), O(δ0) and in terms of the operators (14) read as

A(1)ϕ(0) = 0,(16)

A(1)ϕ(1) + A(2)ϕ(0) = fk(x)gk(y),(17)

A(1)ϕ(2) + A(2)ϕ(1) + A(3)ϕ(0) = −∂fk
∂xi

(x)
∂ψk
∂yi

(y).(18)

The equation of order δ−2. The equation (16) of leading order is a PDE for
the function ϕ(0)(x,y), where y is the independent variable and x plays the role of a
parameter. Its unique solution (with respect to y) is simply a function of x that does
not depend on y. We write

(19) ϕ(0)(x,y) = ϕ(x).

The equation of order δ−1. Making direct use of relation (19), the equation
(17) of order δ−1 reduces to

(20) − ∂

∂yi

[
εij (y)

∂ϕ(1)

∂yj
(x,y)

]
=
∂εij
∂yi

(y)
∂ϕ

∂xj
(x) + fk(x)gk(y), y ∈ Y,

which, for a given function ϕ(x) and a given x, can be thought of as a PDE for the
function ϕ(1)(x,y) in the periodic unit cell Y with x playing the role of a parameter.
By introducing the Y -periodic functions ωi(y) and $i(y) defined implicitly as the
unique solutions of the linear elliptic PDEs
(21)

∂

∂yi

[
εij (y)

∂ωk
∂yj

(y)
]

=
∂εik
∂yi

(y) , y ∈ Y,∫
Y
ωk(y)dy = 0,


∂

∂yi

[
εij (y)

∂$k

∂yj
(y)
]

= gk(y), y ∈ Y,∫
Y
$k(y)dy = 0,

the unique solution (with respect to y) of (20) can be written as
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1968 VICTOR LEFÈVRE AND OSCAR LOPEZ-PAMIES

(22) ϕ(1)(x,y) = −ωk(y)
∂ϕ

∂xk
(x)− $k(y)fk(x) + r(1)(x),

where r(1)(x) is an arbitrary function of x.
The equation of order δ0. Making again direct use of relation (19), the equa-

tion (18) of order δ0 can be simplified to

− ∂

∂yi

[
εij (y)

∂ϕ(2)

∂yj
(x,y)

]
=

∂

∂yi

[
εij (y)

∂ϕ(1)

∂xj
(x,y)

]
(23)

+
∂

∂xi

[
εij (y)

(
∂ϕ

∂xj
(x) +

∂ϕ(1)

∂yj
(x,y)

)]
− ∂fk
∂xi

(x)
∂ψk
∂yi

(y), y ∈ Y.

For a given function ϕ(x) and a given x (since ϕ(1)(x,y) is given by (22) in terms
of ϕ(x)), this equation can be thought of as a PDE for the function ϕ(2)(x,y) in the
periodic unit cell Y with x playing the role of a parameter.

Now, the PDE (23) admits a solution (with respect to y and unique up to an
additive constant) for ϕ(2)(x,y) if its right-hand side has zero average over Y ; this is
the so-called Fredholm alternative. Consequently, after some manipulation employing
the divergence theorem together with the Y -periodicity of ε(y) and ϕ(1)(x,y), we
require that

(24)
∂

∂xi

∫
Y

[
εij (y)

(
∂ϕ

∂xj
(x) +

∂ϕ(1)

∂yj
(x,y)

)
− fk(x)

∂ψk
∂yi

(y)
]

dy = 0.

Making use of the representation (22) for ϕ(1)(x,y) in terms of the Y -periodic func-
tions ωi(y) and $i(y), applying the divergence theorem repeatedly, and exploiting
the Y -periodicity of the PDEs (21), this equation can be simplified to

(25)
∂

∂xi

[
−ε̂ij

∂ϕ

∂xj
(x)
]

= q̂(x),

where

ε̂ij =
∫
Y

εik (y)
(
δjk −

∂ωj
∂yk

(y)
)

dy and q̂(x) = − ∂

∂xi
[α̂ijfj(x)](26)

with

α̂ij =
∫
Y

(
εik (y)

∂$j

∂yk
(y) + yigj(y)

)
dy =

∫
Y

(yi − ωi(y)) gj(y)dy.(27)

Equation (25) is the homogenized PDE in Ω that, together with the boundary con-
dition ϕ(x) = φ(x) on ∂Ω, completely determines the macroscopic electric potential
ϕ(x). The following remarks are in order:

i. Physical interpretation of the homogenized equation (25) for ϕ(x). Equation
(25), together with the boundary condition ϕ(x) = φ(x) on ∂Ω, corresponds to the
governing equation for the electrostatic field within a homogeneous dielectric medium,
with constant effective permittivity tensor ε̂, which contains a distribution of space
charges characterized by the effective space-charge density q̂(x).

ii. The effective permittivity tensor ε̂. The effective permittivity tensor (26)1 that
emerges in the homogenized equation (25) is independent of the choice of the domain
Ω occupied by the composite, the boundary conditions on ∂Ω, and the presence of
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HOMOGENIZATION OF ELASTIC DIELECTRICS WITH SOURCES 1969

space charges. Moreover, it follows from the properties (2) and (5)1 of the local
permittivity ε(y) and the definition (21)1 of the function ωi(y) that ε̂ satisfies the
standard properties

ε̂ij = ε̂ji, ε̂ijξiξj ≥ ε0ξkξk ∀ ξ ∈ RN , ε̂ij ∈ L∞(Ω)(28)

of a homogeneous dielectric medium; see, e.g., section 2.3 of Chapter 1 in [6].
iii. The effective space-charge density q̂(x). The effective space-charge density

(26)2 that emerges in the homogenized equation (25) depends fundamentally on the
presence of space charges through both of the constitutive functions f(x) and g(y)
defining their density (10). It follows from the regularity (11)1 of the function f(x)
and the definiteness of the integrals in (27) that

q̂ ∈ H1(Ω).(29)

It is also interesting to note that the total content of macroscopic space charges implied
by the effective space-charge density (26)2,∫

Ω
q̂(x)dx = −

∫
Ω
α̂ij

∂fj
∂xi

(x)dx,(30)

need not be necessarily zero (only certain choices of the constitutive function f(x)
render macroscopic charge neutrality).

iv. Mathematical well-posedness. In view of the properties (28)2,3 and (29) of ε̂
and q̂(x), and of the smoothness of ∂Ω, it follows from the Lax–Milgram theorem
that the solution of the homogenized equation (25), supplemented by the boundary
condition ϕ(x) = φ(x) on ∂Ω, for the macroscopic electric potential ϕ(x) exists and
is unique in H1(Ω). The fact that the effective permittivity ε̂ is a constant together
with the regularity φ ∈ H3/2(∂Ω) and the smoothness of the boundary ∂Ω imply in
fact the following stronger regularity result for ϕ(x):

(31) ϕ ∈ H2(Ω) and Gradϕ ∈ H1(Ω; RN ) ⊂ L4(Ω; RN );

see, e.g., Chapter 8 in [12], Chapter 6.3 in [10], Theorem 8.3 in [23], and Theorem 9.16
in [7]. The higher regularity ϕ ∈ H3(Ω) can be obtained by considering boundary
data φ ∈ H5/2(∂Ω). We shall invoke this higher regularity in section 3.

v. Computation of ε̂ and q̂(x). Evaluation of the formula (26)1 for the effective
permittivity tensor ε̂ requires knowledge of the Y -periodic function ωi ∈ H1

] (Y ) de-
fined by the PDE (21)1. In general, this PDE does not admit an analytical solution
and hence must be solved numerically; being linear elliptic, the PDE (21)1 can be
readily solved, for instance, by the finite element method. Similarly, evaluation of
the formula (26)2 for the effective space-charge density q̂(x) requires knowledge of the
Y -periodic function $i ∈ H1

] (Y ) defined by the PDE (21)2. Given the alternative rep-
resentation for α̂ij in the second equality of (27)2—which is a simple consequence of
the divergence theorem and the Y -periodicity of the PDEs (21)—the effective space-
charge density q̂(x) can also be obtained directly from knowledge of ωi(y).

vi. The correction function ϕ(1)(x,y). Having completely determined the func-
tion ϕ(x) in terms of equation (25) allows one to determine (up to an additive function
of x) the correction function ϕ(1)(x,y) in the expansion (13)1 by virtue of relation
(22). Knowledge of ϕ(1)(x,y) allows one in turn to determine the leading-order term
of the corresponding asymptotic expansion for the electric field Eδ(X) in the limit as
δ → 0:
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1970 VICTOR LEFÈVRE AND OSCAR LOPEZ-PAMIES

Eδi (X) =− ∂ϕδ

∂Xi
(X) =

∞∑
k=0

δkE
(k)
i (x,y) = −

(
∂ϕ

∂xi
(x) +

∂ϕ(1)

∂yi
(x,y)

)
+O(δ)(32)

and, by the same token, the leading-order term of the expansion for the electric
displacement field Dδ(X):

(33) Dδ
i (X) = εδij(X)Eδj (X) =

∞∑
k=0

δkD
(k)
i (x,y) = εij(y)E(0)

j (x,y) +O(δ).

vii. The macro-variables. In addition to identifying ϕ(x) as the macro-variable
for the electric potential in the homogenized equation (25), a quick glance at (25)
suffices to recognize the macroscopic electric field

(34) Ei(x) .= − ∂ϕ
∂xi

(x)

and the macroscopic electric displacement field

(35) Di(x) .= − ε̂ij
∂ϕ

∂xj
(x)

as the corresponding macro-variables that complete the electrostatics characterization
of the resulting effective dielectric medium.

The macro-variable (34) turns out to be identical to the one that arises in the
classical context of dielectric composites without rapidly oscillating source terms (see,
e.g., Chapter 2 in [6]). Namely, it corresponds to the average over the unit cell Y of
the leading-order term in the asymptotic expansion (32) of the electric field Eδ(X)2:

(36) Ei(x) =
∫
Y

E
(0)
i (x,y)dy.

By the same token, the macro-variable (34) is consistent with the classical heuristic
definition of macro-variables—in the absence of source terms—due to Hill [13, 14].

By contrast, the macro-variable (35) is not in accord with the classical result;
instead relation (35) corresponds to the average over the unit cell Y of the leading-
order term in the asymptotic expansion (33) of the electric displacement field Dδ(X)
plus an additional contribution due to the presence of charges, specifically,

(37) Di(x) =
∫
Y

D
(0)
i (x,y)dy +

(∫
Y

ωi(y)gj(y)dy
)
fj(x).

viii. An alternative set of macro-variables. By exploiting the divergence form
of the effective space-charge density (26)2 and rewriting the homogenized equation
(25) as

∂

∂xi

[
−ε̂ij

∂ϕ

∂xj
(x) + α̂ijfj(x)

]
= 0,(38)

one can alternatively define the same macroscopic electric field

(39) Ei(x) .= − ∂ϕ
∂xi

(x)

2From a mathematical point of view, the macro-variable (34) corresponds to the weak L2 limit
of Eδ(X) as δ → 0.
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HOMOGENIZATION OF ELASTIC DIELECTRICS WITH SOURCES 1971

as in remark vii above, but the different macro-variable

Di(x) .= − ε̂ij
∂ϕ

∂xj
(x) + α̂ijfj(x)(40)

for the macroscopic electric displacement field instead of (35). Similar to the definition
(35), the macro-variable (40) corresponds to the average over the unit cell Y of the
leading-order term in the asymptotic expansion (33) of the electric displacement field
Dδ(X) plus an additional contribution due to the presence of charges; in this case,

(41) Di(x) =
∫
Y

D
(0)
i (x,y)dy +

(∫
Y

yigj(y)dy
)
fj(x).

Alternatively, this relation can be recast as a surface integral, namely,

(42) Di(x) =
∫
∂Y

yiD
(0)
j (x,y)njdy.

We conclude this remark by emphasizing that, in the alternative view (38) of the
homogenized equation (25), the homogenized material is no longer a standard ho-
mogenous dielectric that contains a distribution of space charges, but rather some
sort of source-free polarized dielectric with the term α̂ijfj(x) playing the role of an
initial polarization in the electric displacement field.

2.2. The limit of the displacement field uδ(X) as δ → 0 . Next, we turn
to the asymptotic analysis for the displacement field uδ(X). Similar to the preceding
asymptotic analysis for the electric potential field ϕδ(X), it proves helpful to introduce
the operators

Bδik = δ−2B
(1)
ik + δ−1B

(2)
ik + δ0B

(3)
ik with

B
(1)
ik =

∂

∂yj

[
Lijkl (y)

∂

∂yl

]
, B

(2)
ik =

∂

∂yj

[
Lijkl (y)

∂

∂xl

]
+

∂

∂xj

[
Lijkl (y)

∂

∂yl

]
,(43)

B
(3)
ik =

∂

∂xj

[
Lijkl (y)

∂

∂xl

]
and

Cδi (h1, h2) = δ−3C
(0)
i (h1, h2) + δ−2C

(1)
i (h1, h2) + δ−1C

(2)
i (h1, h2) + δ0C

(3)
i (h1, h2) with

C
(0)
i (h1, h2) = − ∂

∂yj

[
Mijkl (y)

∂h1

∂yk

∂h2

∂yl

]
,

(44)

C
(1)
i (h1, h2) = − ∂

∂yj

[
Mijkl (y)

(
∂h1

∂yk

∂h2

∂xl
+
∂h1

∂xk

∂h2

∂yl

)]
− ∂

∂xj

[
Mijkl (y)

∂h1

∂yk

∂h2

∂yl

]
,

C
(2)
i (h1, h2) = − ∂

∂xj

[
Mijkl (y)

(
∂h1

∂yk

∂h2

∂xl
+
∂h1

∂xk

∂h2

∂yl

)]
− ∂

∂yj

[
Mijkl (y)

∂h1

∂xk

∂h2

∂xl

]
,

C
(3)
i (h1, h2) = − ∂

∂xj

[
Mijkl (y)

∂h1

∂xk

∂h2

∂xl

]
in order to recast the PDE (9)1 for the displacement field uδ(X) in the more convenient
form

Bδiku
δ
k = Cδi (ϕ

δ, ϕδ).(45)
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1972 VICTOR LEFÈVRE AND OSCAR LOPEZ-PAMIES

Substituting the ansatz (13) in the PDE (45) and expanding in powers of δ leads to
a hierarchy of equations for the functions u(k)(x,y). Only the first four of these, of
O(δ−3), O(δ−2), O(δ−1), and O(δ0), turn out to be needed for our purposes here. In
terms of the operators (43) and (44), they read as

0 = C
(0)
i (ϕ(0), ϕ(0)),(46)

B
(1)
ik u

(0)
k = C

(1)
i (ϕ(0), ϕ(0)) + C

(0)
i (ϕ(0), ϕ(1)) + C

(0)
i (ϕ(1), ϕ(0)),(47)

B
(1)
ik u

(1)
k + B

(2)
ik u

(0)
k = C

(2)
i (ϕ(0), ϕ(0)) + C

(1)
i (ϕ(0), ϕ(1)) + C

(1)
i (ϕ(1), ϕ(0))(48)

+ C
(0)
i (ϕ(0), ϕ(2)) + C

(0)
i (ϕ(2), ϕ(0)) + C

(0)
i (ϕ(1), ϕ(1)),

B
(1)
ik u

(2)
k + B

(2)
ik u

(1)
k + B

(3)
ik u

(0)
k = C

(3)
i (ϕ(0), ϕ(0)) + C

(2)
i (ϕ(0), ϕ(1)) + C

(2)
i (ϕ(1), ϕ(0))

(49)

+ C
(1)
i (ϕ(0), ϕ(2)) + C

(1)
i (ϕ(2), ϕ(0)) + C

(1)
i (ϕ(1), ϕ(1))

+ C
(0)
i (ϕ(0), ϕ(3)) + C

(0)
i (ϕ(3), ϕ(0)) + C

(0)
i (ϕ(1), ϕ(2))

+ C
(0)
i (ϕ(2), ϕ(1)).

In connection with these equations, we emphasize that the function ϕ(0)(x,y) =
ϕ(x) has been completely determined in the preceding subsection, while the func-
tion ϕ(1)(x,y) has been partially determined (up to an additive function of x). On
the other hand, the functions ϕ(2)(x,y) and ϕ(3)(x,y) were not solved for since the
relevant hierarchical equations were not considered. In the sequel, it will become
evident that, in spite of their appearance in (48) and (49), the functions ϕ(2)(x,y)
and ϕ(3)(x,y) are actually not needed for our purposes here, namely, to work out the
solution for the first two terms u(0)(x,y) and u(1)(x,y) in the expansion (13)2.

The equation of order δ−3. Granted the fact that the macroscopic electric
potential ϕ(0)(x,y) = ϕ(x) is independent of y, the equation (46) of leading order is
trivially satisfied.

The equation of order δ−2. By invoking again the independence of ϕ(x) on y,
the equation (47) of order δ−2 reduces to a PDE for the function u(0)(x,y) where y
is the independent variable and x plays the role of a parameter. We write its unique
solution (with respect to y) as

u(0)(x,y) = u(x).(50)

The equation of order δ−1. Next, the equation (48) of order δ−1 can be
written as

∂

∂yj

[
Lijkl (y)

∂u
(1)
k

∂yl
(x,y)

]
= − ∂

∂yj

[
Lijkl (y)

∂uk
∂xl

(x)
](51)

− ∂

∂yj

[
Mijkl (y)

(
∂ϕ(1)

∂yk
(x,y)

∂ϕ

∂xl
(x) +

∂ϕ

∂xk
(x)

∂ϕ(1)

∂yl
(x,y)

)]
− ∂

∂yj

[
Mijkl (y)

∂ϕ

∂xk
(x)

∂ϕ

∂xl
(x)
]
− ∂

∂yj

[
Mijkl (y)

∂ϕ(1)

∂yk
(x,y)

∂ϕ(1)

∂yl
(x,y)

]
, y∈Y.

For a given function u(x) and a given x, this equation is a PDE for the function
u(1)(x,y) in the periodic unit cell Y with x playing the role of a parameter. With
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HOMOGENIZATION OF ELASTIC DIELECTRICS WITH SOURCES 1973

help of the representation (22) for the function ϕ(1)(x,y) and the introduction of the
Y -periodic functions χijk(y), χ̆(1)

ijk(y), χ̆(2)
ijk(y), χ̆(3)

ijk(y), and χ̆(4)
ijk(y) defined implicitly

as the unique solutions of the following linear elliptic PDEs for y ∈ Y ,


∂

∂yj

[
Lijkl (y)

∂χkpq
∂yl

(y)
]

= −∂Lijpq
∂yj

(y),∫
Y
χkpq(y)dy = 0,

(52)


∂

∂yj

[
Lijkl (y)

∂χ̆
(1)
kpq

∂yl
(y)

]
= − ∂

∂yj

[
Mijkl (y)

(
δkp −

∂ωp
∂yk

(y)
)(

δlq −
∂ωq
∂yl

(y)
)]

,∫
Y
χ̆

(1)
kpq(y)dy = 0,

∂

∂yj

[
Lijkl (y)

∂χ̆
(2)
kpq

∂yl
(y)

]
=

∂

∂yj

[
Mijkl (y)

(
δkp −

∂ωp
∂yk

(y)
)
∂$q

∂yl
(y)
]
,∫

Y
χ̆

(2)
kpq(y)dy = 0,

∂

∂yj

[
Lijkl (y)

∂χ̆
(3)
kpq

∂yl
(y)

]
=

∂

∂yj

[
Mijkl (y)

∂$p

∂yk
(y)
(
δlq −

∂ωq
∂yl

(y)
)]

,∫
Y
χ̆

(3)
kpq(y)dy = 0,

∂

∂yj

[
Lijkl (y)

∂χ̆
(4)
kpq

∂yl
(y)

]
= − ∂

∂yj

[
Mijkl (y)

∂$p

∂yk
(y)

∂$q

∂yl
(y)
]
,∫

Y
χ̆

(4)
kpq(y)dy = 0,

the unique solution (with respect to y) of (51) can be written in the form

u
(1)
i (x,y) = χipq(y)

∂up
∂xq

(x) + χ̆
(1)
ipq(y)

∂ϕ

∂xp
(x)

∂ϕ

∂xq
(x) + χ̆

(2)
ipq(y)

∂ϕ

∂xp
(x)fq(x)(53)

+ χ̆
(3)
ipq(y)fp(x)

∂ϕ

∂xq
(x) + χ̆

(4)
ipq(y)fp(x)fq(x) + s

(1)
i (x),

where s(1)(x) is an arbitrary function of x.
The equation of order δ0. For a given function u(x) and a given x (since

u(1)(x,y) is given by (53) in terms of u(x)), the equation (49) of order δ0 can be
thought of as a PDE for the function u(2)(x,y) in the periodic unit cell Y with x
playing the role of a parameter. By invoking yet again the Fredholm alternative, such
a PDE admits a solution (with respect to y and unique up to an additive constant)
for u(2)(x,y) so long as the condition

∫
Y

∂

∂xj

[
Lijkl (y)

(
∂uk
∂xl

(x) +
∂u

(1)
k

∂yl
(x,y)

)]
dy

(54)

+
∫
Y

∂

∂xj

[
Mijkl (y)

(
∂ϕ

∂xk
(x) +

∂ϕ(1)

∂yk
(x,y)

)(
∂ϕ

∂xl
(x) +

∂ϕ(1)

∂yl
(x,y)

)]
dy = 0

is satisfied; in the derivation of this condition, use has been made of the divergence
theorem together with the Y -periodicity of L(y), M(y), ϕ(1)(x,y), ϕ(2)(x,y), and
u(1)(x,y).
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1974 VICTOR LEFÈVRE AND OSCAR LOPEZ-PAMIES

Making now use of the representation (22) for ϕ(1)(x,y) in terms of the Y -periodic
functions ωi(y), $i(y), the representation (53) for u(1)(x,y) in terms of the Y -periodic
functions χijk(y), χ̆(1)

ijk(y), χ̆(2)
ijk(y), χ̆(3)

ijk(y), χ̆(4)
ijk(y), and repeated use of the diver-

gence theorem, equation (54) simplifies to

(55)
∂

∂xj

[
L̃ijkl

∂uk
∂xl

(x) + M̂ijkl
∂ϕ

∂xk
(x)

∂ϕ

∂xl
(x)
]

= − b̂i(x;ϕ(x)),

where

L̃ijkl =
∫
Y

Lijpq(y)
(
δpkδql +

∂χpkl
∂yq

(y)
)

dy,

(56)

M̂ijkl =
∫
Y

{
Lijpq(y)

∂χ̆
(1)
pkl

∂yq
(y) +Mijpq(y)

(
δpk −

∂ωk
∂yp

(y)
)(

δql −
∂ωl
∂yq

(y)
)}

dy

(57)

=
∫
Y

Mrspq(y)
(
δriδsj +

∂χrij
∂ys

(y)
)(

δpk −
∂ωk
∂yp

(y)
)(

δql −
∂ωl
∂yq

(y)
)

dy,

and

b̂i(x;ϕ(x)) =
∂

∂xj

[
−B̂(1)

ijkl

∂ϕ

∂xk
(x)fl(x)− B̂(2)

ijklfk(x)
∂ϕ

∂xl
(x) + B̂

(3)
ijklfk(x)fl(x)

]
(58)

with

B̂
(1)
ijkl = −

∫
Y

{
Lijpq(y)

∂χ̆
(2)
pkl

∂yq
(y)−Mijpq(y)

(
δpk −

∂ωk
∂yp

(y)
)
∂$l

∂yq
(y)

}
dy(59)

=
∫
Y

Mrspq(y)
(
δriδsj +

∂χrij
∂ys

(y)
)(

δpk −
∂ωk
∂yp

(y)
)
∂$l

∂yq
(y) dy,

B̂
(2)
ijkl = −

∫
Y

{
Lijpq(y)

∂χ̆
(3)
pkl

∂yq
(y)−Mijpq(y)

∂$k

∂yp
(y)
(
δql −

∂ωl
∂yq

(y)
)}

dy(60)

=
∫
Y

Mrspq(y)
(
δriδsj +

∂χrij
∂ys

(y)
)
∂$k

∂yp
(y)
(
δql −

∂ωl
∂yq

(y)
)

dy,

B̂
(3)
ijkl =

∫
Y

{
Lijpq(y)

∂χ̆
(4)
pkl

∂yq
(y) +Mijpq(y)

∂$k

∂yp
(y)

∂$l

∂yq
(y)

}
dy(61)

=
∫
Y

Mrspq(y)
(
δriδsj +

∂χrij
∂ys

(y)
)
∂$k

∂yp
(y)

∂$l

∂yq
(y) dy.

For a given macroscopic electric field ϕ(x) defined by the PDE (25) and a given bound-
ary condition u(x) = v(x) on ∂Ω, (55) is the homogenized PDE in Ω that completely
determines the macroscopic displacement field u(x). The following remarks are in
order:

i. Physical interpretation of the homogenized equation (55) for u(x). Equation
(55), together with the one-way coupled PDE (25) for the macroscopic electric field
ϕ(x) and the boundary conditions ϕ(x) = φ(x) and u(x) = v(x) on ∂Ω, consti-
tutes the governing equation for the displacement field within a homogeneous elastic
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HOMOGENIZATION OF ELASTIC DIELECTRICS WITH SOURCES 1975

dielectric medium, with constant effective elasticity tensor L̃ and constant effective
electrostriction tensor M̂, which contains a distribution of body forces characterized
by the effective body-force density b̂(x;ϕ(x)). Figure 2 provides a schematic of this
physical interpretation of the homogenized equations (25) and (55).

ii. The effective elasticity and electrostriction tensors L̃ and M̂. Much like the
effective permittivity tensor ε̂ in the homogenized equation (25) for ϕ(x), the effective
elasticity tensor (56) and the effective electrostriction tensor (57) in the homogenized
equation (55) for u(x) are independent of the choice of the domain Ω occupied by
the composite, the boundary conditions on ∂Ω, and the presence of space charges.
Moreover, it follows from the properties (3)2 and (5)2 of the local elasticity tensor
L(y) and the definition (52)1 of the function χijk(y) that L̃ satisfies the standard
properties

L̃ijkl = L̃klij = L̃jikl = L̃ijlk, L̃ijklΞijΞkl > θΞpqΞpq ∀Ξ ∈ RN×N , L̃ijkl ∈ L∞(Ω),
(62)

for some positive constant θ, of a homogeneous elastic dielectric medium; see, e.g.,
section 2.3 of Chapter 1 in [6] and Chapter 1.1.4 in [2]. Similarly, it follows from the
properties (3)2 and (5)2 of the local elasticity tensor L(y), the property (5)3 of the
local electrostriction tensor M(y), and the definition (52)1 of the function χijk(y)
that M̂ also satisfies the standard properties

M̂ijkl = M̂jikl = M̂ijlk, M̂ijkl ∈ L∞(Ω)(63)

of a homogeneous elastic dielectric medium.
iii. The effective body-force density b̂(x;ϕ(x)). In spite of the fact that there are

no body forces in the original boundary-value problem (9) for uδ(X), body forces
appear in the homogenized equation (55) for u(x). These emerge as a result of the
presence of space charges in the coupled boundary-value problem (8) for ϕδ(X). In
particular, the effective body-force density (58) that emerges in the homogenized
equation (55) is independent of the choice of the domain Ω occupied by the composite
and the boundary conditions on ∂Ω. Its dependence on the presence of space charges
is through both constitutive functions f(x) and g(y) defining their density (10), as

−

+

+

+

+

+ +

−

−

−

−

−

Fig. 2. Schematic illustrating that in the limit as δ → 0 an elastic dielectric composite with
heterogeneous properties εδ(X), Lδ(X), Mδ(X) containing a distribution of passive space charges—
characterized by the density (10) with arbitrary but fixed functions f(X) and g(δ−1X)—reduces to
an elastic dielectric with homogeneous effective properties ε̂, L̃, M̂, effective space-charge density
q̂(X), and effective body-force density b̂(X;ϕ(X)).
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1976 VICTOR LEFÈVRE AND OSCAR LOPEZ-PAMIES

well as through the macroscopic electric potential ϕ(x). Granted the boundedness
(5)3 of the local electrostriction tensor M(y), the regularity (11)1 of the constitutive
function f(x), the definitions (21) and (52)1 of the functions ωi(y), $i(y), χijk(y),
and the fact that Gradϕ ∈ H1(Ω; RN ) ⊂ L4(Ω; RN ), it follows that the effective
body-force density (58) is of the divergence form

b̂(x;ϕ(x)) = Div B(x), B ∈ L2(Ω; RN×N ).(64)

iv. Mathematical well-posedness. Granted the properties (62)2,3, (63)2, (64) of
L̃, M̂, b̂(x;ϕ(x)), the regularity result (31)2 for ϕ(x), the boundary condition u(x) =
v(x) ∈ H1/2(∂Ω; RN ) on ∂Ω, and the smoothness of ∂Ω, it follows from the Lax–
Milgram theorem that the solution of the homogenized equation (55) for the macro-
scopic displacement field u(x) exists, is unique, and

(65) u ∈ H1(Ω; RN ).

v. Computation of L̃, M̂, and b̂(x;ϕ(x)). Evaluation of the formulas (56) and
(57) for the effective elasticity tensor L̃ and the effective electrostriction tensor M̂
requires knowledge of the Y -periodic function χipq ∈ H1

] (Y ) defined by the PDE
(52)1 and the Y -periodic function ωi ∈ H1

] (Y ) defined by the PDE (21)1. These are
linear elliptic PDEs that do not generally admit an analytical solution, but they can
be readily solved numerically, for instance, by the finite element method. In addition
to the solution of the homogenized equation (25) for the macroscopic electric potential
ϕ(x), evaluation of the formula (58) for the effective body-force density b̂(x;ϕ(x))
also requires the solutions for the functions ωi ∈ H1

] (Y ) and χijk ∈ H1
] (Y ), as well

as for the Y -periodic function $i ∈ H1
] (Y ) defined by the linear elliptic PDE (21)2,

whose gradients appear in the tensors B̂(1), B̂(2), and B̂(3).
vi. The correction function u(1)(x,y). By virtue of relation (53), having com-

pletely determined the function ϕ(x) from (25) and the function u(x) from (55) allows
one to determine (up to an additive function of x) the correction function u(1)(x,y)
in the expansion (13)2. Knowledge of u(1)(x,y) allows one in turn to determine the
leading-order term in the corresponding expansion for the gradient of the displacement
field Hδ(X) in the limit as δ → 0:

Hδ
ij(X) =

∂uδi
∂Xj

(X) =
∞∑
k=0

δkH
(k)
ij (x,y) =

∂ui
∂xj

(x) +
∂u

(1)
i

∂yj
(x,y) +O(δ)(66)

and, by the same token, the leading-order term of the expansion for the first Piola–
Kirchhoff stress tensor Sδ(X):

Sδij(X) = Lδijkl(X)Hδ
kl(X) +Mδ

ijkl(X)Eδk(X)Eδl (X) =
∞∑
k=0

δkS
(k)
ij (x,y)(67)

= Lijkl(y)H(0)
kl (x,y) +Mijkl(y)E(0)

k (x,y)E(0)
l (x,y) +O(δ).

vii. The macro-variables. Similar to the identification of macro-variables in the
homogenized equation (25) for the macroscopic electric potential ϕ(x), a quick glance
at (55) suffices to recognize not only u(x) as the macro-variable for the displacement
field, but also the macroscopic gradient of the displacement

(68) Hij(x) .=
∂ui
∂xj

(x)
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HOMOGENIZATION OF ELASTIC DIELECTRICS WITH SOURCES 1977

and the macroscopic stress

(69) Sij(x) .= L̃ijkl
∂uk
∂xl

(x) + M̂ijkl
∂ϕ

∂xk
(x)

∂ϕ

∂xl
(x)

as the corresponding macro-variables that complete the electroelastostatics charac-
terization of the resulting effective elastic dielectric medium.

Akin to the standard macro-variable (34) that arises for the electric field, (68) is
the standard macro-variable that emerges in the classical context of linear elasticity
without rapidly oscillating source terms (see, e.g., Chapter 1 in [2]), in the sense that
it corresponds to the average over the unit cell Y of the leading-order term in the
asymptotic expansion (66) of the gradient of the displacement field Hδ(X):

(70) Hij(x) =
∫
Y

H
(0)
ij (x,y)dy.

The macro-variable (68) is then also in accord with the classical heuristic definition
of macro-variables [13, 14].

By contrast, the macro-variable (69) differs from the classical result, since it
corresponds to the average over the unit cell Y of the leading-order term in the
asymptotic expansion (67) of the stress Sδ(X) plus additional contributions due to
the presence of charges, specifically,

Sij(x) =
∫
Y

S
(0)
ij (x,y)dy + B̂

(1)
ijkl

∂ϕ

∂xk
(x)fl(x) + B̂

(2)
ijklfk(x)

∂ϕ

∂xl
(x)− B̂(3)

ijklfk(x)fl(x).

(71)

viii. An alternative set of macro-variables. By exploiting the divergence form of
the effective body-force density (58) and rewriting the homogenized equation (55) as

∂

∂xj

[
L̃ijkl

∂uk
∂xl

(x) + M̂ijkl
∂ϕ

∂xk
(x)

∂ϕ

∂xl
(x)− B̂(1)

ijkl

∂ϕ

∂xk
(x)fl(x)(72)

− B̂(2)
ijklfk(x)

∂ϕ

∂xl
(x) + B̂

(3)
ijklfk(x)fl(x)

]
= 0,

one can alternatively define the same macroscopic gradient of the displacement field

(73) Hij(x) .=
∂ui
∂xj

(x)

as in remark vii above, but the different macro-variable

Sij(x) .= L̃ijkl
∂uk
∂xl

(x) + M̂ijkl
∂ϕ

∂xk
(x)

∂ϕ

∂xl
(x)− B̂(1)

ijkl

∂ϕ

∂xk
(x)fl(x)(74)

− B̂
(2)
ijklfk(x)

∂ϕ

∂xl
(x) + B̂

(3)
ijklfk(x)fl(x)

for the macroscopic stress instead of (69). Contrary to the definition (69), the macro-
variable (74) is consistent with the standard definition that emerges in the classical
context of linear elasticity without rapidly oscillating source terms (see, e.g., Chapter
1 in [2]), in the sense that it corresponds to the average over the unit cell Y of the
leading-order term in the asymptotic expansion (67) of the stress Sδ(X):

(75) Sij(x) =
∫
Y

S
(0)
ij (x,y)dy.
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1978 VICTOR LEFÈVRE AND OSCAR LOPEZ-PAMIES

In regard to the above-identified alternative set of macro-variables, we emphasize
that, in the alternative view (72) of the homogenized equation (55), the homoge-
nized material is no longer a standard homogenous elastic dielectric with even elec-
tromechanical coupling that contains a distribution of space charges and body forces,
but rather a source-free elastic dielectric with complicated electromechanical coupling
which is neither even nor odd.

ix. The absence of space charges. In the absence of space charges when f(x) = 0
and/or g(y) = 0, the effective space-charge density (26)2 and the effective body-force
density (58) vanish,

(76) q̂(x) = 0 and b̂(x;ϕ(x)) = 0,

and the homogenized equations (25) and (55), supplemented by the boundary con-
ditions ϕ(x) = φ(x) and u(x) = v(x) on ∂Ω, reduce to the homogenized equations
originally obtained by Tian [37] and Tian et al. [38] via the two-scale convergence
method [1].

3. A class of active charges. The preceding derivation of the homogenized
equations (25) and (55) for the macroscopic electric field ϕ(x) and macroscopic dis-
placement field u(x) is valid for any choice—subject to the conditions (11)—of con-
stitutive functions f(x) and g(y) defining the density of space charges (10) in the
composite. These functions may be chosen not to be fixed or passive but to be active
instead, in the sense that they may be selected to depend on ϕδ(X) and/or on uδ(X).
More generally, the functions f(x) and g(y) may be selected to have both passive as
well as active components.

In this section, motivated by the work of Lopez-Pamies et al. [26], we work out
the homogenized equations for elastic dielectric composites that contain a special class
of active charges wherein the function g(y) is arbitrary but fixed while the function
f(x) is set to be proportional to the macroscopic electric field:

fi(x) = − ∂ϕ
∂xi

(x).(77)

From a mathematical point of view, we remark that this choice is valid provided
that ϕ ∈ H3(Ω) since the function f(x) was chosen from the outset to have the regu-
larity (11)1. Accordingly, throughout this section, we shall assume that the boundary
data φ ∈ H5/2(∂Ω). As it will become clear further below, this will ensure that
ϕ ∈ H3(Ω); cf. remark iv following the homogenized equation (25).

From a physical standpoint, roughly speaking, relation (77) corresponds to a mi-
croscopic distribution of space charges that scales in magnitude and aligns in direction
with the electric field at the macroscopic material point x. The precise details of the
local alignment of the space charges are characterized by the specifics of the function
g(y). At this point, it is important to emphasize that little is actually known about the
constitutive behavior of active space charges in deformable solids from direct exper-
imental measurements. Indeed, for the prominent case of dielectric elastomers filled
with (semi)conducting or high-dielectric nanoparticles (see, e.g., [16, 28, 24]), space
charges are expected to be active (i.e., locally mobile) in the regions of the elastomer
immediately surrounding the nanoparticles [21, 30, 29], but direct measurements of
the precise content and local mobility of the space charges contained therein have
proved thus far difficult. The prescription (77) corresponds perhaps to the simplest
physically plausible prototype that is consistent with the otherwise accessible macro-
scopic experimental measurements [25, 26, 20]. In this regard, it is also important to
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HOMOGENIZATION OF ELASTIC DIELECTRICS WITH SOURCES 1979

remark that other classes of active space charges—such as those described by the lo-
cal version f(X) = −Gradϕδ(X) of (77)—have been checked to lead to similar results
to those that ensue from (77), and hence support the general physical implications
presented here.

Granted the constitutive choice (77) for f(x), it is straightforward to deduce from
(25) that the homogenized equation for the macroscopic electric field ϕ(x) is given by

∂

∂xi

[
−ε̃ij

∂ϕ

∂xj
(x)
]

= 0(78)

with

ε̃ij = ε̂ij + α̂ij =
∫
Y

{
εik (y)

(
δjk −

∂ωj
∂yk

(y) +
∂$j

∂yk
(y)
)

+ yigj(y)
}

dy.(79)

Similarly, it is straightforward to deduce from (55) that the homogenized equation for
the macroscopic displacement field u(x) is given by

∂

∂xj

[
L̃ijkl

∂uk
∂xl

(x) + M̃ijkl
∂ϕ

∂xk
(x)

∂ϕ

∂xl
(x)
]

= 0,(80)

where the macroscopic electric field ϕ(x) is defined implicitly by (78), it is recalled
that L̃ijkl is given by expression (56),

M̃ijkl = M̂ijkl + B̂
(1)
ijkl + B̂

(2)
ijkl + B̂

(3)
ijkl =

∫
Y

Mrspq(y)
(
δriδsj +

∂χrij
∂ys

(y)
)

(81)

×
(
δpk −

∂ωk
∂yp

(y) +
∂$k

∂yp
(y)
)(

δql −
∂ωl
∂yq

(y) +
∂$l

∂yq
(y)
)

dy,

and it is further recalled that ωi(y), $i(y), and χijk(y) are the Y -periodic functions
with zero average in Y defined by the PDEs (21) and (52)1.

Equations (78) and (80), together with the boundary conditions ϕ(x) = φ(x) and
u(x) = v(x) on ∂Ω, are the homogenized PDEs in Ω for the macroscopic electric field
ϕ(x) and macroscopic displacement field u(x). A number of remarks are in order:

i. Physical interpretation of the homogenized equations (78) and (80) for ϕ(x) and
u(x). The one-way coupled system of PDEs (78) and (80) for the macroscopic electric
field ϕ(x) and the macroscopic displacement field u(x) constitute the governing equa-
tions for a homogeneous elastic dielectric medium, with constant effective permittivity
tensor ε̃, constant effective elasticity tensor L̃, and constant effective electrostriction
tensor M̃. Remarkably, in spite of the fact that the elastic dielectric composite con-
tains a distribution of space charges at the length scale of the microstructure, neither
an effective space-charge density nor an effective body-force density show up in the
homogenized equations (78) and (80). Instead, the effect of the space charges shows
up in the effective permittivity tensor ε̃ and the effective electrostriction tensor M̃;
this distinctive feature, which is in direct contrast to the result obtained for passive
charges in the preceding section, is elaborated further in the next remarks. Figure 3
provides a schematic of the above-identified physical interpretation of the homoge-
nized equations (78) and (80).

ii. The effective permittivity, elasticity, and electrostriction tensors ε̃, L̃, and M̃.
The effective elasticity tensor L̃ in the homogenized equation (80) is identical to the
effective elasticity tensor in the homogenized equation (55) for the case of passive
charges; its properties are outlined in remark ii of section 2.2. On the other hand,
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1980 VICTOR LEFÈVRE AND OSCAR LOPEZ-PAMIES

Fig. 3. Schematic illustrating that in the limit as δ → 0 an elastic dielectric composite with
heterogeneous properties εδ(X), Lδ(X), Mδ(X) containing a distribution of active space charges—
characterized by the density (10) with the choice (77) for the function f(X) and arbitrary but fixed
function g(δ−1X)—reduces to an elastic dielectric with homogeneous effective properties ε̃, L̃, M̃.

the effective permittivity tensor (79) and the effective electrostriction tensor (81) that
emerge in the homogenized equations (78) and (80) are different from their counter-
parts in (25) and (55). While they are independent of the choice of the domain Ω
occupied by the composite and the boundary conditions on ∂Ω, the effective tensors
(79) and (81) do depend strongly on the presence of space charges through the con-
stitutive function g(y), which, as discussed in section 1, describes the distribution of
space charges at the length scale of the microstructure.

More specifically, it follows from the regularity (5)1 of the local permittivity tensor
ε(y), the definitions (21) of the functions ωi(y) and $i(y), and the boundedness (11)3
of g(y), that the effective permittivity (79) is bounded,

ε̃ij ∈ L∞(Ω),(82)

but, rather remarkably, it is not necessarily symmetric, nor positive definite for the
cases when is symmetric; whether ε̃ is symmetric and, if so, positive definite, depends
on the choice of constitutive function g(y). It further follows from the properties (4)
and (5)3 of the local electrostriction tensor M(y), together with the definitions (21)
and (52)1 of the functions ωi(y), $i(y), and χijk(y), that the effective electrostriction
tensor (81) satisfies the standard properties

M̃ijkl = M̃jikl = M̃ijlk, M̃ijkl ∈ L∞(Ω)(83)

of a homogeneous elastic dielectric medium.
Here, it is important to recognize that, in spite of the boundedness (82) and (83)2,

the components of the effective permittivity (79) and the effective electrostriction
tensor (81) can be made to achieve arbitrarily large positive or negative values as,
in essence, they are proportional to the constitutive function g(y). The physical
implications of these features are far reaching. Indeed, these features confirm that
judicious manipulation of space charges in deformable dielectric composites provides a
promising path forward for the design of materials with exceptional electromechanical
properties, including materials with unusually large permittivities and electrostriction
coefficients and metamaterials featuring negative permittivity, cf. [34].

iii. Mathematical well-posedness. For choices of the constitutive function g(y)
that lead to effective permittivity tensors ε̃ that are symmetric and either positive
or negative definite, the homogenized equation (78) for the macroscopic electric field
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HOMOGENIZATION OF ELASTIC DIELECTRICS WITH SOURCES 1981

ϕ(x) is nothing more than a standard second-order linear elliptic PDE with constant
coefficient and hence, given the boundary condition ϕ(x) = φ(x) ∈ H5/2(∂Ω) on ∂Ω
and the smoothness of ∂Ω, its solution exists, is unique, and possesses the following
regularity properties:

(84) ϕ ∈ H3(Ω) and Gradϕ ∈ H2(Ω; RN ) ⊂ L4(Ω; RN ).

In turn, granted the properties (62)2,3 and (83)2 of L̃ and M̃, the regularity result
(84)2 for ϕ(x), the boundary condition u(x) = v(x) ∈ H1/2(∂Ω; RN ) on ∂Ω, and
the smoothness of ∂Ω, the Lax–Milgram theorem ensures existence and uniqueness of
the solution of the homogenized equation (80) for the macroscopic displacement field
u(x); in particular,

(85) u ∈ H1(Ω; RN ).

For choices of the constitutive function g(y) that lead to effective permittivity tensors
ε̃ that are not symmetric but satisfy the ellipticity condition ε̃ijξiξj ≥ ε0ξkξk ∀ ξ ∈
RN , solutions for the macroscopic fields ϕ(x) and u(x) also exist, are unique, and
possess the regularity (84) and (85). Finally, for choices of the constitutive function
g(y) that lead to effective permittivity tensors ε̃ that (are either symmetric or not
symmetric but) do not satisfy the ellipticity condition ε̃ijξiξj ≥ ε0ξkξk ∀ ξ ∈ RN , the
homogenized equation (78) is not elliptic and hence solutions for the macroscopic
electric field ϕ(x) may not exist.

iv. Computation of ε̃, L̃, and M̃. Evaluation of the formulas (79) and (81) for
the effective permittivity tensor ε̃ and effective electrostriction tensor M̃ requires
knowledge of the Y -periodic functions ωi ∈ H1

] (Y ), $i ∈ H1
] (Y ) only through the

linear combination $i(y) − ωi(y). Their evaluation amounts then to solving not
the two boundary-value problems (21) for ωi(y) and $i(y), but instead the single
boundary-value problem

(86)


∂

∂yi

[
εik (y)

(
δkj +

∂ω̆j
∂yk

(y)
)]

= gj(y), y ∈ Y∫
Y
ω̆j(y)dy = 0

for ω̆i(y) .= $i(y)−ωi(y).

Evaluation of the formula (56) for the effective elasticity tensor L̃ requires knowledge
of the Y -periodic function χijk ∈ H1

] (Y ) defined by the PDE (52)1. The two above-
identified equations for ω̆i(y) and χijk(y) are linear elliptic PDEs that can be readily
solved numerically, for instance, again, by the finite element method [35].

v. The leading-order terms for the electric field Eδ(X), the electric displacement
field Dδ(X), the gradient of the displacement field Hδ(X), and the stress Sδ(X).
Granted the constitutive choice (77) for the function f(x), it is a simple matter
to deduce from (32) and (33) that the leading-order terms in the homogenization
limit as δ → 0 for the electric field Eδ(X) and the electric displacement field Dδ(X)
specialize to

E
(0)
i (x,y) = −

(
δik −

∂ωk
∂yi

(y) +
∂$k

∂yi
(y)
)
∂ϕ

∂xk
(x)(87)

and

D
(0)
i (x,y) = εij(y)E(0)

j (x,y).(88)
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Similarly, with help of the notation χ̆kpq(y) .= χ̆
(1)
kpq(y)− χ̆(2)

kpq(y)− χ̆(3)
kpq(y) + χ̆

(4)
kpq(y),

it is a simple matter to deduce from (66) and (67) that the leading-order terms for the
gradient of the displacement field Hδ(X) and the first Piola–Kirchhoff stress tensor
Sδ(X) specialize to

H
(0)
ij (x,y) =

∂ui
∂xj

(x) +
∂χipq
∂yj

(y)
∂up
∂xq

(x) +
∂χ̆ipq
∂yj

(y)
∂ϕ

∂xp
(x)

∂ϕ

∂xq
(x)(89)

and

S
(0)
ij (x,y) = Lijkl(y)H(0)

kl (x,y) +Mijkl(y)E(0)
k (x,y)E(0)

l (x,y).(90)

vi. The macro-variables. The macro-variables that emerge from the one-way
coupled homogenized equations (78) and (80) for the macroscopic electric field and
the macroscopic electric displacement field can be readily deduced to be given by

Ei(x) .= − ∂ϕ
∂xi

(x) and Di(x) .= −ε̃ij
∂ϕ

∂xj
(x),(91)

while those that emerge for the macroscopic gradient of the displacement field and
the macroscopic stress are given by

(92) Hij(x) .=
∂ui
∂xj

(x) and Sij(x) .= L̃ijkl
∂uk
∂xl

(x) + M̃ijkl
∂ϕ

∂xk
(x)

∂ϕ

∂xl
(x).

The macro-variables (91)1 and (92) for the electric field, the gradient of the deforma-
tion, and the stress agree with the classical definition,

Ei(x) =
∫
Y

E
(0)
i (x,y)dy, Hij(x) =

∫
Y

H
(0)
ij (x,y)dy, Sij(x) =

∫
Y

S
(0)
ij (x,y)dy,

(93)

while the macro-variable (91)2 for the electric displacement field does not. Instead,
relation (91)2 corresponds to the average over the unit cell Y of the leading-order
term in the asymptotic expansion (88) of the electric displacement field Dδ(X) plus
an additional contribution due to the presence of charges, specifically,

Di(x) =
∫
Y

D
(0)
i (x,y)dy −

(∫
Y

yigj(y)dy
)
∂ϕ

∂xj
(x).(94)

As opposed to its counterpart (37) for the case of passive charges, relation (94) can
be written as a surface integral:

Di(x) =
∫
∂Y

yiD
(0)
j (x,y)njdy.(95)

4. Sample results. The homogenized equations (25) and (55)—or, equivalently,
(38) and (72)—provide a simple yet powerful tool to investigate the macroscopic elastic
dielectric response of deformable dielectrics that, due to their fabrication process,
contain from the outset a distribution of space charges in their “ground” state (i.e., in
the absence of externally applied electric fields and mechanical forces). As mentioned
during the setting of the problem, a prominent example of such a class of materials
is electrets [18]. Similarly, the homogenized equations (78) and (80) provide a tool
to investigate the macroscopic elastic dielectric response of deformable dielectrics
that do not contain space charges in their ground state, but that, instead, develop
an internal distribution of space charges when externally subjected to an electric
field, for instance, by a charge injection process [21, 30]. Dielectric elastomers filled
with (semi)conducting or high-dielectric nanoparticles have been recently identified
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as a possible example of such a class of materials [21, 26, 20]. In this final section,
with the compound purpose of demonstrating the use of the resulting homogenized
equations and of illustrating the dominant effect that space charges can have on the
macroscopic behavior of elastic dielectrics, we work out an example problem in N = 1
space dimension (where all the pertinent calculations can be carried out analytically)
with application to porous electrets [11, 5, 15].

4.1. A porous electret with passive charges on the walls of the pores.
We begin with the presentation of the results for the effective coefficients ε̂ = ε̂11,
α̂ = α̂11, L̃ = L̃1111, M̂ = M̂1111, B̂(1) = B̂

(1)
1111, B̂(2) = B̂

(2)
1111, B̂(3) = B̂

(3)
1111 in the

homogenized equations (25), (55) and then turn to the corresponding macroscopic
response under an externally applied uniaxial field of a porous electret made up of
alternating layers of an elastic dielectric matrix and air-filled pores bonded through
thin interphases that contain passive charges. From a physical point of view, these
results are aimed at describing the enhanced piezoelectric-like response of porous
electrets due to the presence of fixed charges on the walls of the enclosed pores.

Microscopic description of the porous electret. We take the matrix phase in the
electret to be an ideal elastic dielectric with constant permittivity εm and elasticity
modulus µm. To account for their internal pressure [17, 27], we also take the air-
filled pores to be ideal elastic dielectrics with constant permittivity εp and elasticity
modulus µp and, accordingly, write the sole component (recall that in this example
N = 1) of the local permittivity, elasticity, and electrostriction tensors (1) as the
scalar functions

ε11(y) =
[
1− θp(y)

]
εm + θp(y)εp, L1111(y) = 2

[
1− θp(y)

]
µm + 2θp(y)µp,(96)

M1111(y) =
1
2
ε11(y)

of the single space variable y along the Cartesian laboratory axis e1 aligned with the
unit cell Y = (0, 1); see Figure 4(a) for a schematic. In the above expressions, θp(y)
stands for the indicator function of the spatial regions occupied by the pores and is
given by3

(97) θp(y) =

 1 if
1− cp

2
< y <

1 + cp
2

,

0 otherwise

with cp =
∫
Y
θp(y)dy denoting the volume fraction of pores in the electret. In addi-

tion, we model the distribution of passive charges through the choice of constant and
piecewise constant constitutive functions

f1(x) = 1 V/m and g1(y) = −[θi1(y)− θi2(y)]β(98)

in (10). Here, the parameter β (of units F/m) corresponds to some measure of the
charge content, while

θi1(y) =

1 if
1− cp

2
< y <

1− cp + ci
2

,

0 otherwise,
θi2(y) =

1 if
1 + cp − ci

2
< y <

1 + cp
2

,

0 otherwise

(99)

3Note that the piecewise constant permittivity (96)1 does not fall within the realm of the regu-
larity (5)1 assumed at the outset. However, as already alluded to in section 1, the homogenization
formulae worked out in sections 2 and 3 remain valid for the type of piecewise constant permittivity
considered here.
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Fig. 4. (a) Schematic of the unit cell Y illustrating the layered distribution of air-filled pores
and the surrounding interphases of space charges, as characterized by the indicator functions (97)
and (99). (b) Comparison between the macroscopic “piezoelectric” coefficient d̂ (solid line) defined
by (103), experimental data (triangles) of Hillenbrand and Sessler [15], and an earlier analytical
result (dashed line) due to Deng et al. [8].

are the indicator functions of the two thin interphasial regions surrounding the
pores where the charges are located; see Figure 4(a). In these last expressions,
ci =

∫
Y
{θi1(y)+θi2(y)}dy denotes the total volume fraction of the regions containing

the charges.
The effective coefficients ε̂11, α̂11, L̃1111, M̂1111, B̂(1)

1111, B̂(2)
1111, B̂(3)

1111. Upon di-
rect use of the local elastic dielectric properties (96) and constitutive functions (98)
characterizing the distribution of charges, the ordinary differential equations that re-
sult from (21) and (52)1 for the functions ω1(y), $1(y), and χ111(y) can be readily
solved in closed form. In turn, the integrals (26)1, (27), (56), (57), and (59)–(61) can
be readily evaluated in closed form to render

ε̂11 =
εmεp

cpεm + (1− cp)εp
, α̂11 =

ci(2cp − ci)εmβ
4[cpεm + (1− cp)εp]

, L̃1111 =
2µmµp

cpµm + (1− cp)µp
,

(100)

M̂1111 =
1
4

(
1− cp
εmµm

+
cp
εpµp

)
ε̂ 2

11L̃1111, B̂
(1)
1111 =

(1− cp)(µp − µm)
4εmµmµp

ε̂11α̂11L̃1111,

B̂
(2)
1111 = B̂

(1)
1111, B̂

(3)
1111 =

(
1− cp
4εmµm

+
(1− cp)2(3cp − 2ci)εp

3(2cp − ci)2ε2
mµp

+
ci(4cp − 3ci)[cpεm + 2(1− cp)εp]

12(2cp − ci)2εmεpµp

)
α̂ 2

11L̃1111.

For subsequent comparison with some experimental results of Hillenbrand and Sessler
[15], we list in Table 1 the values taken by the effective coefficients (100) for the

Table 1
Computed values of the seven effective coefficients ε̂11, α̂11, L̃1111, M̂1111, B̂(1)

1111 = B̂
(2)
1111,

B̂
(3)
1111 characterizing the macroscopic properties of the porous electret with charges (β = 0.2 F/m)

on the walls of the enclosed pores.

ε̂11 α̂11 (F/m) L̃1111 (MPa) M̂1111 B̂
(1)
1111 (F/m) B̂

(3)
1111 (F/m)

1.35 ε0 7.35× 10−4 0.85 0.91 ε0 −1.72× 10−4 4.04× 103
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choice of material parameters εm = 2.35 ε0, µm = 1.0 GPa, εp = ε0, µp = 0.23 MPa,
β = 0.2 F/m, cp = 0.55, and ci = 0.01; recall that ε0 ≈ 8.85 × 10−12 F/m stands
for the permittivity of vacuum. These values correspond to a polypropylene film
with 55% porosity and overall Young’s modulus 0.84 MPa as in the experiments of
Hillenbrand and Sessler [15].

Macroscopic response of a thin film under a uniaxial electric field. Now that the
seven effective coefficients (100) have been determined, any boundary-value problem
of interest may be investigated with help of the homogenized equations (25) and (55).
Here, we consider a popular one in experiments wherein a thin film of thickness t made
up of the porous electret is subjected to a uniaxial electric field across its thickness
through the application of a voltage Φ. In such a setup, neglecting fringe effects, the
governing equations (25) and (55) are trivially satisfied and the macroscopic electric
potential and macroscopic displacement field are given (up to an additive constant) by

ϕ(x) = −E1x and u1(x) = H11x(101)

with

E1 = −Φ
t

and H11 = −M̂1111

L̃1111
E

2
1 −

2B̂(1)
1111

L̃1111
E1 −

B̂
(3)
1111

L̃1111
.(102)

A quantity of significant practical interest that can be readily extracted from the
solution (101)–(102) is the macroscopic “piezoelectric” coefficient

d̂
.=
∂H11

∂E1
= −2M̂1111

L̃1111
E1 −

2B̂(1)
1111

L̃1111
(103)

= −1
2

(
1− cp
εmµm

+
cp
εpµp

)
ε̂ 2

11E1 −
(1− cp)(µp − µm)

2εmµmµp
ε̂11α̂11.

For comparison with the experimental data (triangles) of Hillenbrand and Sessler [15]
for a 71-µm-thick polypropylene film with 55% porosity,4 this coefficient is plotted
(solid line) in Figure 4, as a function of the applied electric field E1, for the numerical
values of the parameters listed in Table 1. For further comparisons, the earlier ana-
lytical result (dashed line) of Deng et al. [8] is also included in the figure.

Appendix. Governing equations for elastic dielectric composites in the
limit of small deformations and moderate electric fields in the presence of
space charges. Consider a deformable composite material with periodic microstruc-
ture of period δ that occupies a bounded domain Ω ⊂ RN (N = 1, 2, 3), with smooth
boundary ∂Ω and closure Ω = Ω ∪ ∂Ω, in its undeformed configuration. Material
points are identified by their initial position vector X in Ω relative to some fixed
point. Upon the application of mechanical and electrical stimuli, the position vector
X of a material point moves to a new position specified by x = X + uδ(X), where
the displacement field uδ(X) is loosely taken to possess sufficient regularity to war-
rant the mathematical well-posedness of the equations that follow. The associated
deformation gradient is denoted by Fδ(X) = I + Grad uδ(X).

In the absence of magnetic fields, free currents, and body forces, and with no
time dependence (see, e.g., Chapter 15 in [19]; see also [9, 25]), Maxwell’s and the
momentum balance equations require that

4Note that the pores in the specimens of Hillenbrand and Sessler [15] were of oblate spheroidal
shape, and not exactly layers as in the sample calculations presented here.
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Div Dδ(X) = qδ(X), Curl Eδ(X) = 0, X ∈ RN(104)

and

Div Sδ(X) = 0, SδFδ
T

= FδSδ
T
, X ∈ Ω,(105)

where Dδ(X), Eδ(X), Sδ(X) stand for the Lagrangian electric displacement field,
the Lagrangian electric field, and the “total” first Piola–Kirchhoff stress tensor, while
qδ(X) stands for the density of space charges per unit undeformed volume. For the
specific case when the composite material is a (hyper)elastic dielectric with even
electromechanical coupling, we further have the constitutive connections

Dδ(X) = −∂W
δ

∂Eδ
(X,Fδ,Eδ) and Sδ(X) =

∂W δ

∂Fδ
(X,Fδ,Eδ),(106)

where the “total” free energy W δ(X,Fδ,Eδ) is an objective function of the deforma-
tion gradient tensor Fδ and an even and objective function of the electric field Eδ,
namely, W δ(X,Fδ,Eδ) = W δ(X,QFδ,Eδ) = W δ(X,Fδ,−Eδ) for all Q ∈ Orth+
and arbitrary X, Fδ, and Eδ.

Upon recognizing that the assumed objectivity of W δ(X,Fδ,Eδ) implies the au-
tomatic satisfaction of the balance of angular momentum (105)2 and that Faraday’s
law (104)2 is automatically satisfied by the introduction of an electric potential ϕδ(X)
such that Eδ(X) = −Grad ϕδ(X), the equations governing the elastic dielectric re-
sponse of the composite material reduce to the PDEs

Div
[
−∂W

δ

∂Eδ
(X,Fδ,Eδ)

]
= qδ(X), X ∈ RN and Div

[
∂W δ

∂Fδ
(X,Fδ,Eδ)

]
= 0, X ∈ Ω.

(107)

The classical limit of small deformations and moderate electric fields. Now, let us
define ζ as a vanishingly small parameter and take the deformation measure Hδ(X) =
Fδ(X)−I = Grad uδ(X) to be O(ζ) and the electric field Eδ(X) = −Grad ϕδ(X) to be
O(ζ1/2). Then, assuming that the composite material is stress free in the undeformed
configuration Ω, the asymptotic result

W δ(X,Fδ,Eδ) = − 1
2
Eδi ε

δ
ij(X)Eδj +

1
2
Hδ
ijL

δ
ijkl(X)Hδ

kl(108)

+Hδ
ijM

δ
ijkl(X)EδkE

δ
l − EδiEδj T δijkl(X)EδkE

δ
l +O(ζ3)

follows from a simple formal calculation (and the physically inconsequential choice
that W δ(X, I,0) = 0). Here, εδij(X) = −∂2W δ(X, I,0)/∂Eδi ∂E

δ
j is the permittiv-

ity tensor, Lδijkl(X) = ∂2W δ(X, I,0)/∂F δij∂F
δ
kl is the elasticity tensor, Mδ

ijkl(X) =
1/2 ∂3W δ(X, I,0)/∂F δij∂E

δ
k∂E

δ
l is the electrostriction tensor, and T δijkl(X) = −1/24

∂4W δ(X, I,0)/∂Eδi ∂E
δ
j ∂E

δ
k∂E

δ
l is the permittivity tensor of second order. In turn,

to leading order, the constitutive relations (106) reduce to (see also Chapter 2.25 in
[36]; section 15 in [39]; Chapters 2 and 3 in [37]; [33, 35]):

Dδ
i (X) = εδij(X)Eδj +O(ζ3/2) and Sδij(X) = Lδijkl(X)Hδ

kl +M δ
ijkl(X)EδkE

δ
l +O(ζ2).

(109)

By taking the space-charge density qδ(X) to be O(ζ1/2), and by restricting atten-
tion to Dirichlet boundary conditions, the one-way coupled boundary-value problems
(8)–(9) in the main body of the text follow readily upon direct use of the asymptotic
expressions (109) in the governing PDEs (107).
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